OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 9 — Sep. 8, 2008

Use of a customized vision model to analyze the effects of higher-order ocular aberrations and neural filtering on contrast threshold performance

Eugénie Dalimier and Chris Dainty  »View Author Affiliations

JOSA A, Vol. 25, Issue 8, pp. 2078-2087 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (388 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Customized optical filtering and light-dependent neural filtering were implemented in an ideal-observer model for an L-alternative forced-choice visual task. The model was applied to a contrast threshold visual task with adaptive optics correction of ocular higher-order (HO) aberrations under different light regimes, for which experimental data have previously been obtained (J. Mod. Opt. 55, 791, 2008) . A separability measure was used to assess the model-observer performance and to investigate the joint effect of optical and neural filtering. The numerical results were consistent with the experimental data in the assessment of the effect of HO aberrations as a function of light level.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(330.4060) Vision, color, and visual optics : Vision modeling
(330.6110) Vision, color, and visual optics : Spatial filtering
(330.4595) Vision, color, and visual optics : Optical effects on vision

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: October 17, 2007
Revised Manuscript: May 16, 2008
Manuscript Accepted: June 13, 2008
Published: July 23, 2008

Virtual Issues
Vol. 3, Iss. 9 Virtual Journal for Biomedical Optics

Eugénie Dalimier and Chris Dainty, "Use of a customized vision model to analyze the effects of higher-order ocular aberrations and neural filtering on contrast threshold performance," J. Opt. Soc. Am. A 25, 2078-2087 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Y. Yoon and D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266-275 (2002). [CrossRef]
  2. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, “Adaptive optics visual simulator,” J. Refract. Surg. 18, S634-S638 (2002). [PubMed]
  3. P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, “Use of adaptive optics to determine the optimal ocular spherical aberration,” J. Cataract Refractive Surg. 33, 1721-1726 (2007). [CrossRef]
  4. K. M. Rocha, L. Vabre, F. Harms, N. Chateau, and R. R. Krueger, “Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology,” J. Refract. Surg. 23, 953-959 (2007). [PubMed]
  5. E. Dalimier, C. Dainty, and J. L. Barbur, “Effects of higher-order aberrations on functional vision as a function of light level,” J. Mod. Opt. 55, 791-803 (2008). [CrossRef]
  6. F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol. (London) 197, 551-566 (1968).
  7. F. W. Campbell, R. H. S. Carpenter, and J. Z. Levinson, “Visibility of a periodic patterns compared with that of sinusoidal gratings,” J. Physiol. (London) 204, 283-298 (1969).
  8. K. R. Alexander, W. Xie, and D. J. Derlacki, “Spatial-frequency characteristics of letter identification,” J. Opt. Soc. Am. A 11, 2375-2382 (1994). [CrossRef]
  9. J. A. Solomon and D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395-397 (1994). [CrossRef]
  10. S. T. L. Chung, G. E. Legge, and B. S. Tjan, “Spatial-frequency characteristics of letter identification in central and peripheral vision,” Vision Res. 42, 2137-2152 (2002). [CrossRef] [PubMed]
  11. O. Nestares, R. Navarro, and B. Antona, “Bayesian model of Snellen visual acuity,” J. Opt. Soc. Am. A 20, 1371-1381 (2003). [CrossRef]
  12. D. A. Atchison, “Recent advances in measurement of monochromatic aberrations of human eyes,” Clin. Exp. Optom. 88, 5-27 (2005). [CrossRef] [PubMed]
  13. A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1-9 (2002). [CrossRef]
  14. A. B. Watson and J. A. J. Ahumada, “Predicting visual acuity from wavefront aberrations,” J. Vision 8, 1-19 (2008). [CrossRef]
  15. A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. 38, 196-208 (1948). [CrossRef] [PubMed]
  16. P. L. Kaufman and A. Alm, Adler's Physiology of the Eye: Clinical Application, 10th ed. (Mosby-Year Book, 2003).
  17. A. Stockman and L. T. Sharpe, “Into the twilight zone: The complexities of mesopic vision and luminous efficiency,” Ophthalmic Physiol. Opt. 26, 225-239 (2006). [CrossRef] [PubMed]
  18. A. S. Patel, “Spatial resolution by the human visual system. The effect of mean retinal illuminance,” J. Opt. Soc. Am. 56, 689-694 (1966). [CrossRef] [PubMed]
  19. P. Artal, “Calculations of two-dimensional foveal retinal images in real eyes,” J. Opt. Soc. Am. A 7, 1374-1381 (1990). [CrossRef] [PubMed]
  20. J. Schwiegerling, “Wavefront guided lasik,” Opt. Photonics News 15, 26-29 (2004). [CrossRef]
  21. R. Navarro, E. Moreno-Barriuso, S. Bará, and T. Mancebo, “Phase plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236-238 (2000). [CrossRef]
  22. J. Holladay, P. Piers, G. Koranyi, M. van der Mooren, and N. Norrby, “A new intraocular lens design to reduce spherical aberration of pseudophakic eyes,” J. Refract. Surg. 18, 683-691 (2002). [PubMed]
  23. C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. (London) 187, 517-552 (1966).
  24. F. L. V. Nes and M. A. Bouman, “Spatial modulation transfer in the human eye,” J. Opt. Soc. Am. 57, 401-406 (1967). [CrossRef]
  25. A. V. Meeteren and J. J. Vos, “Resolution and contrast sensitivity at low luminances,” Vision Res. 12, 825-833 (1972). [CrossRef] [PubMed]
  26. N. J. Coletta and V. Sharma, “Effects of luminance and spatial noise on interferometric contrast sensitivity,” J. Opt. Soc. Am. A 12, 2244-2251 (1995). [CrossRef]
  27. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).
  28. A. E. Burgess and H. Ghandeharian, “Visual signal detection. II. Signal-location identification,” J. Opt. Soc. Am. A 1, 906-910 (1984). [CrossRef] [PubMed]
  29. G. A. Gescheider, Psychophysics: The Fundamentals, 3rd ed. (Lawrence Erlbaum Associates, 1997).
  30. C. M. Chisholm, A. D. B. Evans, J. A. Harlow, and J. L. Barbur, “New test to assess pilot's vision following refractive surgery,” Aviat., Space Environ. Med. 74, 551-559 (2003).
  31. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  32. A. B. Watson and D. G. Pelli, “Quest: A bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113-120 (1983). [CrossRef] [PubMed]
  33. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vision 4, 329-351 (2004). [CrossRef]
  34. J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322-328 (2004). [CrossRef]
  35. R. A. Applegate, J. D. Marsack, and L. N. Thibos, “Metrics of retinal image quality predict visual performance in eyes with 20/17 or better acuity,” Optom. Vision Sci. 83, 1611-1623 (2006). [CrossRef]
  36. R. A. Applegate and V. Lakshminarayanan, “Parametric representation of Stiles-Crawford functions: Normal variation of peak location and directionality,” J. Opt. Soc. Am. A 10, 635-640 (1993). [CrossRef]
  37. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye's wave aberration,” J. Opt. Soc. Am. A 18, 497-506 (2001). [CrossRef]
  38. A. Guirao, D. R. Williams, and I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye's higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003-1015 (2001). [CrossRef]
  39. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural compensation for the eye's optical aberrations,” J. Vision 4, 281-287 (2004). [CrossRef]
  40. X. He and E. C. Frey, “An optimal three-class linear observer derived from decision theory,” IEEE Trans. Med. Imaging 26, 77-83 (2007). [CrossRef] [PubMed]
  41. M. B. Sachs, J. Nachmias, and J. G. Robson, “Spatial-frequency channels in human vision,” J. Opt. Soc. Am. 61, 1176-1186 (1971). [CrossRef] [PubMed]
  42. V. M. Bondarko and M. V. Danilova, “What spatial frequency do we use to detect the orientation of a Landolt C?” Vision Res. 37, 2153-2156 (1997). [CrossRef] [PubMed]
  43. R. F. Hess, S. C. Dakin, and N. Kapoor, “The foveal 'crowding' effect: Physics or physiology?” Vision Res. 40, 365-370 (2000). [CrossRef] [PubMed]
  44. R. S. Anderson and L. N. Thibos, “Relationship between acuity for gratings and for tumbling-E letters in peripheral vision,” J. Opt. Soc. Am. A 16, 2321-2333 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited