OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 9 — Sep. 8, 2008

Robust determination of the anisotropic polarizability of nanoparticles using coherent confocal microscopy

Brynmor J. Davis and P. Scott Carney  »View Author Affiliations

JOSA A, Vol. 25, Issue 8, pp. 2102-2113 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (558 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A coherent confocal microscope is proposed as a means to fully characterize the elastic scattering properties of a nanoparticle as a function of wavelength. Using a high numerical aperture lens, two-dimensional scanning, and a simple vector-beam shaper, the rank-2 polarizability tensor is estimated from a single confocal image. A method for computationally efficient data processing is described, and numerical simulations show that this algorithm is robust to noise and uncertainty in the focal plane position. The proposed method is a generalization of techniques that provide an estimate of a limited set of scattering parameters, such as a single orientation angle for rodlike particles. The measurement of the polarizability obviates the need for a priori assumptions about the nanoparticle.

© 2008 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(180.3170) Microscopy : Interference microscopy
(290.0290) Scattering : Scattering
(110.1758) Imaging systems : Computational imaging
(100.3200) Image processing : Inverse scattering

ToC Category:

Original Manuscript: April 9, 2008
Manuscript Accepted: June 8, 2008
Published: July 24, 2008

Virtual Issues
Vol. 3, Iss. 9 Virtual Journal for Biomedical Optics

Brynmor J. Davis and P. Scott Carney, "Robust determination of the anisotropic polarizability of nanoparticles using coherent confocal microscopy," J. Opt. Soc. Am. A 25, 2102-2113 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V.Rotello, ed., Nanoparticles: Building Blocks for Nanotechnology (Springer, 2003).
  2. G.Schmid, ed., Nanoparticles: From Theory to Application (Wiley, 2004).
  3. D.Thassu, M.Deleers, and Y.Pathak, eds., Nanoparticle Drug Delivery Systems (Informa Healthcare, 2007). [CrossRef]
  4. K. Kalantar-Zadeh and B. Fry, Nanotechnology-Enabled Sensors (Springer, 2007).
  5. J.W.Bulte and M.Modo, eds., Nanoparticles in Biomedical Imaging (Springer, 2008). [CrossRef]
  6. G.E.Fryxell and G.Cao, eds., Environmental Applications of Nanomaterials: Synthesis, Sorbents and Sensors (Imperial College, 2007). [CrossRef]
  7. E. Fritsch, E. Gaillou, B. Rondeau, A. Barreau, D. Albertini, and M. Ostroumov, “The nanostructure of fire opal,” J. Non-Cryst. Solids 352, 3957-3960 (2006). [CrossRef]
  8. D. Jembrih-Simbürger, C. Neelmeijer, O. Schalm, P. Fredrickx, M. Schreiner, K. De Vis, M. Mäder, D. Schryvers, and J. Caen, “The colour of silver stained glass--analytical investigations carried out with XRF, SEM/EDX, TEM and IBA,” J. Anal. At. Spectrom. 17, 321-328 (2002). [CrossRef]
  9. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788-792 (2004). [CrossRef] [PubMed]
  10. R. W. Ziolkowski and N. Engheta, eds., Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
  11. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  12. J. Aaron, E. de la Rosa, K. Travis, N. Harrison, J. Burt, M. José-Yacamán, and K. Sokolov, “Polarization microscopy with stellated gold nanoparticles for robust, in-situ monitoring of biomolecules,” Opt. Express 16, 2153-2167 (2008). [CrossRef] [PubMed]
  13. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755-6759 (2002). [CrossRef]
  14. J. Nelayah, M. Kociak, O. Stéphan, F. J. García de Abajo, M. Tence, L. Henrard, D. Taverna, I. Pastoriza-Santos, L. Liz-Marzán, and C. Colliex, “Mapping surface plasmons on a single metallic nanoparticle,” Nat. Phys. 3, 348-353 (2007). [CrossRef]
  15. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  16. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491-1499 (1994). [CrossRef]
  17. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).
  18. B. K. Canfield, S. Kujala, K. Laiho, K. Jefimovs, J. Turunen, and M. Kauranen, “Chirality arising from small defects in gold nanoparticle arrays,” Opt. Express 14, 950-955 (2006). [CrossRef] [PubMed]
  19. D. Gabor and W. P. Goss, “Interference microscope with total wavefront reconstruction,” J. Opt. Soc. Am. 56, 849-858 (1966). [CrossRef]
  20. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  21. M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Academic, 2006).
  22. F. V. Ignatovich and L. Novotny, “Real-time and background-free detection of nanoscale particles,” Phys. Rev. Lett. 96, 013901 (2006). [CrossRef] [PubMed]
  23. C. L. Jahncke, H. D. Hallen, and M. A. Paesler, “Nano-Raman spectroscopy and imaging with a near-field scanning optical microscope,” J. Raman Spectrosc. 27, 579-586 (1996). [CrossRef]
  24. M. H. Nayfeh, O. Akcakir, G. Belomoin, N. Barry, J. Therrien, and E. Gratton, “Second harmonic generation in microcrystallite films of ultrasmall Si nanoparticles,” Appl. Phys. Lett. 77, 4086-4088 (2000). [CrossRef]
  25. T. Basché, W. E. Moerner, M. Orrit, and U. P. Wild, Single-Molecule Optical Detection, Imaging and Spectroscopy (VCH, 1997).
  26. H. H. Barrett and K. Myers, Foundations of Image Science (Wiley-Interscience, 2003).
  27. J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359-371 (2002). [CrossRef] [PubMed]
  28. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R.-P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: Application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461-4469 (2005). [CrossRef] [PubMed]
  29. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243-256 (2003). [CrossRef]
  30. M. Mujat, E. Baleine, and A. Dogariu, “Interferometric imaging polarimeter,” J. Opt. Soc. Am. A 21, 2244-2249 (2004). [CrossRef]
  31. R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophys. J. 86, 1185-1200 (2004). [CrossRef] [PubMed]
  32. S. Ram, E. S. Ward, and R. J. Ober, “Beyond Rayleigh's criterion: A resolution measure with application to single-molecule microscopy,” Proc. Natl. Acad. Sci. U.S.A. 103, 4457-4462 (2006). [CrossRef] [PubMed]
  33. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization,” Science 300, 2061-2065 (2003). [CrossRef] [PubMed]
  34. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137-141 (2003). [CrossRef]
  35. M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys. 8, 3486-3495 (2006). [CrossRef] [PubMed]
  36. M. Artemyev, D. Kisiel, S. Abmiotko, M. N. Antipina, G. B. Khomutov, V. V. Kislov, and A. A. Rakhnyanskaya, “Self-organized highly luminescent CdSe nanorod-DNA complexes,” J. Am. Chem. Soc. 126, 10594-10597 (2004). [CrossRef] [PubMed]
  37. C. Sönnichsen and A. P. Alivisatos, “Gold nanorods as novel nobleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301-304 (2005). [CrossRef] [PubMed]
  38. A. V. Failla, H. Qian, H. Qian, A. Hartschuh, and A. J. Meixner, “Orientation imaging of subwavelength Au particles with higher order laser modes,” Nano Lett. 6, 1374-1378 (2006). [CrossRef] [PubMed]
  39. A. V. Failla, S. Jäger, T. Züchner, M. Steiner, and A. J. Meixner, “Topology measurements of metal nanoparticles with 1nm accuracy by confocal interference scattering microscopy,” Opt. Express 15, 8532-8542 (2007). [CrossRef] [PubMed]
  40. D. Haefner, S. Sukhov, and A. Dogariu, “Stochastic scattering polarimetry,” Phys. Rev. Lett. 100, 043901 (2008). [CrossRef] [PubMed]
  41. S. Sukhov, D. Haefner, and A. Dogariu, “Stochastic sensing of relative aniostropic polarizabilities,” Phys. Rev. A 77, 043820 (2008). [CrossRef]
  42. F. Kulzer and M. Orrit, “Single-molecule optics,” Annu. Rev. Phys. Chem. 55, 585-611 (2004). [CrossRef] [PubMed]
  43. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597-600 (2005). [CrossRef]
  44. K. C. Toussaint Jr., S. Park, J. E. Jureller, and N. F. Scherer, “Generation of optical vector beams with a diffractive optical element interferometer,” Opt. Lett. 30, 2846-2848 (2005). [CrossRef] [PubMed]
  45. M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett. 27, 1929-1931 (2002). [CrossRef]
  46. A. F. Abouraddy and K. C. Toussaint, Jr., “Three-dimensional polarization control in microscopy,” Phys. Rev. Lett. 96, 153901 (2006). [CrossRef] [PubMed]
  47. M. R. Beversluis, L. Novotny, and S. J. Stranick, “Programmable vector point-spread function engineering,” Opt. Express 14, 2650-2656 (2006). [CrossRef] [PubMed]
  48. M. Prummer, B. Sick, B. Hecht, and U. P. Wild, “Three-dimensional optical polarization tomography of single molecules,” J. Chem. Phys. 118, 9824-9829 (2003). [CrossRef]
  49. J. T. Fourkas, “Rapid determination of the three-dimensional orientation of single molecules,” Opt. Lett. 26, 211-213 (2001). [CrossRef]
  50. B. Sick, B. Hecht, and L. Novotny, “Orientational imaging of single molecules by annular illumination,” Phys. Rev. Lett. 85, 4482-4485 (2000). [CrossRef] [PubMed]
  51. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-moleculeorientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B 21, 1210-1215 (2004). [CrossRef]
  52. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251-5254 (2001). [CrossRef] [PubMed]
  53. A. P. Bartko and R. M. Dickson, “Three-dimensional orientations of polymer-bound single molecules,” J. Phys. Chem. B 103, 3051-3056 (1999).
  54. A. P. Bartko and R. M. Dickson, “Imaging three-dimensional single molecule orientations,” J. Phys. Chem. B 103, 11237-11241 (1999). [CrossRef]
  55. M. Böhmer and J. Enderlein, “Orientation imaging of single molecules by wide-field epifluorescence microscopy,” J. Opt. Soc. Am. B 20, 554-559 (2003). [CrossRef]
  56. E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, “Defocused orientation and position imaging (DOPI) of myosin V,” Proc. Natl. Acad. Sci. U.S.A. 103, 6495-6499 (2006). [CrossRef] [PubMed]
  57. R. Hassey, E. J. Swain, N. I. Hammer, D. Venkataraman, and M. D. Barnes, “Probing the chiroptical response of a single molecule,” Science 314, 1437-1439 (2006). [CrossRef] [PubMed]
  58. D. Patra, I. Gregor, J. Enderlein, and M. Sauer, “Defocused imaging of quantum-dot angular distribution of radiation,” Appl. Phys. Lett. 87, 101103 (2005). [CrossRef]
  59. B. J. Davis, A. K. Swan, M. S. Ünlü, W. C. Karl, B. B. Goldberg, J. C. Schotland, and P. S. Carney, “Spectral self-interference microscopy for low-signal nanoscale axial imaging,” J. Opt. Soc. Am. A 24, 3587-3599 (2007). [CrossRef]
  60. B. J. Davis, S. C. Schlachter, D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy,” J. Opt. Soc. Am. A 24, 2527-2542 (2007). [CrossRef]
  61. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  62. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114-116 (2000). [CrossRef]
  63. B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, “Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy,” Opt. Lett. 32, 1441-1443 (2007). [CrossRef] [PubMed]
  64. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A 253, 358-379 (1959). [CrossRef]
  65. I. J. Cooper, M. Roy, and C. J. R. Sheppard, “Focusing of pseudoradial polarized beams,” Opt. Express 13, 1066-1071 (2005). [CrossRef] [PubMed]
  66. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral representation,” J. Opt. Soc. Am. A 12, 325-332 (1995). [CrossRef]
  67. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717-754 (2004). [CrossRef]
  68. D. Patra, I. Gregor, and J. Enderlein, “Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies,” J. Phys. Chem. A 108, 6836-6841 (2004). [CrossRef]
  69. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, 1990), Chap. 5.2, pp. 131-134.
  70. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory (Prentice-Hall, 1993).
  71. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308-313 (1965).
  72. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge U. Press, 2007), Chap. 10.5, pp. 502-507.
  73. M. Leutenegger, R. Rao, R. A. Leitgeb, and T. Lasser, “Fast focus field calculations,” Opt. Express 14, 11277-11291 (2006). [CrossRef] [PubMed]
  74. I. J. Cooper, C. J. R. Sheppard, and M. Roy, “The numerical integration of fundamental diffraction integrals for converging polarized spherical waves using a two-dimensional form of Simpson's 1/3 rule,” J. Mod. Opt. 52, 1123-1134 (2005). [CrossRef]
  75. E. De Castro and C. Morandi, “Registration of translated and rotated images using finite Fourier transforms,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9, 700-705 (1987). [CrossRef]
  76. S. Yazdanfar, L. H. Laiho, and P. T. C. So, “Interferometric second harmonic generation microscopy,” Opt. Express 12, 2739-2745 (2004). [CrossRef] [PubMed]
  77. B. E. Applegate, C. Yang, A. M. Rollins, and J. A. Izatt, “Polarization-resolved second-harmonic-generation optical coherence tomography in collagen,” Opt. Lett. 29, 2252-2254 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited