OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

Longitudinal chromatic aberration of the human infant eye

Jingyun Wang, T. Rowan Candy, Danielle F.W. Teel, and Robert J. Jacobs  »View Author Affiliations


JOSA A, Vol. 25, Issue 9, pp. 2263-2270 (2008)
http://dx.doi.org/10.1364/JOSAA.25.002263


View Full Text Article

Enhanced HTML    Acrobat PDF (467 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although the longitudinal chromatic aberration (LCA) of the adult eye has been studied, there are no data collected from the human infant eye. A chromatic retinoscope was used to measure cyclopleged infant and adult refractions with four pseudomonochromatic sources (centered at 472, 538, 589, and 652 nm ) and with polychromatic light. The LCA of the infant eyes between 472 and 652 nm was a factor of 1.7 greater than the LCA found in the adult group: infant mean = 1.62 D , SD ± 0.14 D ; adult mean = 0.96 D , SD ± 0.17 D . The elevated level of LCA in infant eyes is consistent with the greater optical power of the immature eye and indicates similar chromatic dispersion in infant and adult eyes. The implications for visual performance, defocus detection, and measurement of refraction are discussed.

© 2008 Optical Society of America

OCIS Codes
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7323) Vision, color, and visual optics : Visual optics, aging changes

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: January 22, 2008
Revised Manuscript: June 24, 2008
Manuscript Accepted: June 24, 2008
Published: August 14, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Jingyun Wang, T. Rowan Candy, Danielle F. W. Teel, and Robert J. Jacobs, "Longitudinal chromatic aberration of the human infant eye," J. Opt. Soc. Am. A 25, 2263-2270 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-25-9-2263


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. G. Sivak and T. Mandelman, “Chromatic dispersion of the ocular media,” Vision Res. 22, 997-1003 (1982). [CrossRef] [PubMed]
  2. V. Dobson and D. Y. Teller, “Visual acuity in human infants: a review and comparison of behavioral and electrophysiological studies,” Vision Res. 18, 1469-1483 (1978). [CrossRef] [PubMed]
  3. A. M. Norcia and C. W. Tyler, “Spatial frequency sweep VEP: visual acuity during the first year of life,” Vision Res. 25, 1399-1408 (1985). [CrossRef] [PubMed]
  4. A. M. Norcia, C. W. Tyler, and R. D. Hamer, “Development of contrast sensitivity in the human infant,” Vision Res. 30, 1475-1486 (1990). [CrossRef] [PubMed]
  5. M. S. Banks and P. Salapatek, “Contrast sensitivity function of the infant visual system,” Vision Res. 16, 867-869 (1976). [CrossRef] [PubMed]
  6. D. Y. Teller, “First glances: the vision of infants. the Friedenwald lecture,” Invest. Ophthalmol. Visual Sci. 38, 2183-2203 (1997).
  7. M. S. Banks and P. J. Bennett, “Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates,” J. Opt. Soc. Am. A 5, 2059-2079 (1988). [CrossRef] [PubMed]
  8. H. R. Wilson, “Development of spatiotemporal mechanisms in infant vision,” Vision Res. 28, 611-628 (1988). [CrossRef] [PubMed]
  9. A. M. Brown, V. Dobson, and J. Maier, “Visual acuity of human infants at scotopic, mesopic and photopic luminances,” Vision Res. 27, 1845-1858 (1987). [CrossRef] [PubMed]
  10. F. J. Rucker and P. B. Kruger, “Accommodation responses to stimuli in cone contrast space,” Vision Res. 44, 2931-2944 (2004). [CrossRef] [PubMed]
  11. P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995). [CrossRef]
  12. P. B. Kruger, S. Mathews, K. R. Aggarwala, and N. Sanchez, “Chromatic aberration and ocular focus: Fincham revisited,” Vision Res. 33, 1397-1411 (1993). [CrossRef] [PubMed]
  13. F. J. Rucker and P. B. Kruger, “Cone contributions to signals for accommodation and the relationship to refractive error,” Vision Res. 46, 3079-3089 (2006). [CrossRef] [PubMed]
  14. C. F. Wildsoet, H. C. Howland, S. Falconer, and K. Dick, “Chromatic aberration and accommodation: their role in emmetropization in the chick,” Vision Res. 33, 1593-1603 (1993). [CrossRef] [PubMed]
  15. B. Rohrer, F. Schaeffel, and E. Zrenner, “Longitudinal chromatic aberration and emmetropization: results from the chicken eye,” J. Physiol. (London) 449, 363-376 (1992).
  16. L. N. Thibos, M. Ye, X. X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594-3600 (1992). [CrossRef] [PubMed]
  17. G. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321-336 (1947). [CrossRef] [PubMed]
  18. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564-565 (1957). [CrossRef] [PubMed]
  19. A. Ivanoff, “Les aberrations de l'oeil leur rôle dans l'accommodation,” Revue d'Optique Théorique et Instrumentale (Durand, Paris, 1953), pp. 43-44.
  20. M. Millodot and J. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Br. J. Physiol. Opt. 28, 169-174 (1973). [PubMed]
  21. W. N. Charman and J. A. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999-1005 (1976). [CrossRef] [PubMed]
  22. L. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152-4155 (1981). [CrossRef] [PubMed]
  23. A. L. Lewis, M. Katz, and C. Oehrlein, “A modified achromatizing lens,” Am. J. Optom. Physiol. Opt. 59, 909-911 (1982). [PubMed]
  24. C. Ware, “Human axial chromatic aberration found not to decline with age,” Graefe's Arch. Clin. Exp. Ophthalmol. 218, 39-41 (1982). [CrossRef]
  25. J. A. Mordi and W. K. Adrian, “Influence of age on chromatic aberration of the human eye,” Am. J. Optom. Physiol. Opt. 62, 864-869 (1985). [PubMed]
  26. P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361-366 (1986). [CrossRef] [PubMed]
  27. D. P. Cooper and P. L. Pease, “Longitudinal chromatic aberration of the human eye and wavelength in focus,” Am. J. Optom. Physiol. Opt. 65, 99-107 (1988). [PubMed]
  28. L. N. Thibos, A. Bradley, and X. X. Zhang, “Effect of ocular chromatic aberration on monocular visual performance,” Optom. Vision Sci. 68, 599-607 (1991). [CrossRef]
  29. E. J. Fernandez, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express 13, 400-409 (2005). [CrossRef] [PubMed]
  30. A. Morrell, H. D. Whitefoot, and W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11, 385-390 (1991). [CrossRef] [PubMed]
  31. P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5, 2087-2092 (1988). [CrossRef] [PubMed]
  32. J. S. Larsen, “The sagittal growth of the eye. IV. Ultrasonic measurement of the axial length of the eye from birth to puberty,” Acta Ophthalmol. 49, 873-886 (1971).
  33. H. H. Emsley, Optics of Vision, Vol. 1, Visual Optics (Hatton Press, 1963).
  34. I. C. Wood, D. O. Mutti, and K. Zadnik, “Crystalline lens parameters in infancy,” Ophthalmic Physiol. Opt. 16, 310-317 (1996). [CrossRef] [PubMed]
  35. C. W. Bobier and J. G. Sivak, “Chromoretinoscopy,” Vision Res. 18, 247-250 (1978). [CrossRef] [PubMed]
  36. C. W. Bobier and J. G. Sivak, “Chromoretinoscopy and its instrumentation,” Am. J. Optom. Physiol. Opt. 57, 106-108 (1980). [PubMed]
  37. ANSI-Z136.1, American National Standard for Safe Use of Lasers (Laser Institute of America, Orlando, 2000).
  38. A. E. Elsner, S. A. Burns, J. J. Weiter, and F. C. Delori, “Infrared imaging of subretinal structures in the human ocular fundus,” Vision Res. 36, 191-205 (1996). [CrossRef] [PubMed]
  39. D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vision Sci. 72, 279-284 (1995). [CrossRef]
  40. T. N. Cornsweet, “The staircase-method in psychophysics,” Am. J. Psychol. 75, 485-491 (1962). [CrossRef] [PubMed]
  41. K. J. Saunders, J. M. Woodhouse, and C. A. Westall, “Emmetropisation in human infancy: rate of change is related to initial refractive error,” Vision Res. 35, 1325-1328 (1995). [CrossRef] [PubMed]
  42. D. L. Mayer, R. M. Hansen, B. D. Moore, S. Kim, and A. B. Fulton, “Cycloplegic refractions in healthy children aged 1 through 48 months,” Arch. Ophthalmol. (Chicago) 119, 1625-1628 (2001).
  43. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7, 502-507 (2001); erratum in Nat. Med. 7, 636 (2001). [CrossRef] [PubMed]
  44. T. R. Candy, J. A. Crowell, and M. S. Banks, “Optical, receptoral, and retinal constraints on foveal and peripheral vision in the human neonate,” Vision Res. 38, 3857-3870 (1998). [CrossRef]
  45. R. Navarro, P. Artal, and D. R. Williams, “Modulation transfer of the human eye as a function of retinal eccentricity,” J. Opt. Soc. Am. A 10, 201-212 (1993). [CrossRef] [PubMed]
  46. M. C. Rynders, R. Navarro, and M. A. Losada, “Objective measurement of the off-axis longitudinal chromatic aberration in the human eye,” Vision Res. 38, 513-522 (1998). [CrossRef] [PubMed]
  47. P. M. Riddell, L. Hainline, and I. Abramov, “Calibration of the Hirschberg test in human infants,” Invest. Ophthalmol. Visual Sci. 35, 538-543 (1994).
  48. G. Smith, R. J. Jacobs, and C. D. Chan, “Effect of defocus on visual acuity as measured by source and observer methods,” Optom. Vision Sci. 66, 430-435 (1989). [CrossRef]
  49. G. Smith, “Angular diameter of defocus blur discs,” Am. J. Optom. Physiol. Opt. 59, 885-889 (1982). [PubMed]
  50. J. Wang and T. R. Candy, “Higher order monochromatic aberrations of the human infant eye,” J. Vision 5, 543-555 (2005). [CrossRef]
  51. C. MacLachlan and H. C. Howland, “Normal values and standard deviations for pupil diameter and interpupillary distance in subjects aged 1 monthto19 years,” Ophthalmic Physiol. Opt. 22, 175-182 (2002). [CrossRef] [PubMed]
  52. M. S. Banks, “The development of visual accommodation during early infancy,” Child Dev. 51, 646-666 (1980). [CrossRef] [PubMed]
  53. P. Salapatek and M. S. Banks, “Infant sensory assessment: vision,” in Communicative and Cognitive Abilities: Early Behavioral Assessment, F.D.Minifie and L.L.Lloyd, eds. (University Park Press, 1978).
  54. E. A. Boettner and J. R. Wolter, “Transmission of the Ocular Media,” Air Force Technical Documentary Report No. MRL-TDR-62-34 (1962).
  55. R. A. Bone, J. T. Landrum, L. Fernandez, and S. L. Tarsis, “Analysis of the macular pigment by HPLC: retinal distribution and age study,” Invest. Ophthalmol. Visual Sci. 29, 843-849 (1988).
  56. J. G. Sivak and C. W. Bobier, “Accommodation and chromatic aberration in young children,” Invest. Ophthalmol. Visual Sci. 17, 705-709 (1978).
  57. M. L. Bieber, K. Knoblauch, and J. S. Werner, “M- and L-cones in early infancy: II. Action spectra at 8 weeks of age,” Vision Res. 38, 1765-1773 (1998). [CrossRef] [PubMed]
  58. J. E. Clavadetscher, A. M. Brown, C. Ankrum, and D. Y. Teller, “Spectral sensitivity and chromatic discriminations in 3- and 7-week-old human infants,” J. Opt. Soc. Am. A 5, 2093-2105 (1988). [CrossRef] [PubMed]
  59. A. B. Fulton and R. M. Hansen, “The development of scotopic sensitivity,” Invest. Ophthalmol. Visual Sci. 41, 1588-1596 (2000).
  60. J. S. Werner, “Development of scotopic sensitivity and the absorption spectrum of the human ocular media,” J. Opt. Soc. Am. 72, 247-258 (1982). [CrossRef] [PubMed]
  61. E. F. Fincham, “The accommodation reflex and its stimulus,” Br. J. Ophthamol. 35, 381-393 (1951). [CrossRef]
  62. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43, 447-468 (2004). [CrossRef] [PubMed]
  63. J. Wang and T. R. Candy, “The threshold stimulus for accommodation in human infants,” Invest. Ophthalmol. Visual Sci. Suppl. 47, 271 (2006).
  64. J. Wang, S. R. Bharadwaj, and T. R. Candy, “The monocular threshold stimulus for accommodation in human infants,” Invest. Ophthalmol. Visual Sci. Suppl. 48, 47 (2007).
  65. G. G. Heath, “Components of accommodation,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 569-579 (1956). [PubMed]
  66. B. J. Wilson, K. E. Decker, and A. Roorda, “Monochromatic aberrations provide an odd-error cue to focus direction,” J. Opt. Soc. Am. A 19, 833-839 (2002). [CrossRef]
  67. E. J. Fernandez and P. Artal, “Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics,” J. Opt. Soc. Am. A 22, 1732-1738 (2005). [CrossRef]
  68. K. M. Hampson, C. Paterson, C. Dainty, and E. A. Mallen, “Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control,” J. Opt. Soc. Am. A 23, 1082-1088 (2006). [CrossRef]
  69. L. Chen, P. B. Kruger, H. Hofer, B. Singer, and D. R. Williams, “Accommodation with higher-order monochromatic aberrations corrected with adaptive optics,” J. Opt. Soc. Am. A 23, 1-8 (2006). [CrossRef]
  70. G. M. Tondel and T. R. Candy, “Human infants' accommodation responses to dynamic stimuli,” Invest. Ophthalmol. Visual Sci. 48, 949-956 (2007). [CrossRef]
  71. M. Glickstein and M. Millodot, “Retinoscopy and eye size,” Science 168, 605-606 (1970). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited