OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 13 — Dec. 2, 2009

Effects of salience and reward information during saccadic decisions under risk

Martin Stritzke, Julia Trommershäuser, and Karl R. Gegenfurtner  »View Author Affiliations


JOSA A, Vol. 26, Issue 11, pp. B1-B13 (2009)
http://dx.doi.org/10.1364/JOSAA.26.0000B1


View Full Text Article

Enhanced HTML    Acrobat PDF (904 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Previous work has demonstrated that humans select visuomotor strategies maximizing expected gain during speeded hand movements under risk; see, e.g., [ Trends Cogn. Sci. 12, 291 (2008) ]; [ Glimcher et al., eds., Neuroeconomics: Decision Making and the Brain (Elsevier, 2008), p. 95 ]. Here we report a similar study in which we recorded saccadic eye movements in a saccadic decision task in which monetary rewards and losses were associated with the final position of the eye movement. Saccades into a color-coded target region won points; saccades into a partially overlapping or abutting penalty region could yield a loss. The points won during the experiment were converted into a small monetary bonus at the end of the experiment. We compared participants’ winnings to the score of an optimal observer maximizing expected gain that was calculated based on each participant’s saccadic endpoint variability, similar to a recent model of optimal movement planning under risk [ J. Opt. Soc. Am. A 20, 1419 (2003) ]; [ Spatial Vis. 16, 255 (2003) ]. We used three different experimental paradigms with different interstimulus intervals (Gap, No Gap, and Overlap) to manipulate saccadic latencies and a fourth experiment (Memory) with a prolonged 500 ms delay period. Our results show that our subjects took the reward information, as specified by the different penalties, into account when making saccades and fixated onto or very close to the target region and less into the penalty region. However, the selected strategies differed significantly from optimal strategies maximizing expected gain in conditions when the magnitude of reward or penalty was changed. Furthermore, scores were notably affected by stimulus saliency. They were higher when the target region was filled and the penalty region outlined by a thin line, as compared to conditions in which the target was indicated by a less salient stimulus. Scores were particularly poor in trials with the shortest latencies ( 120 140 ms ) mostly obtained in the Gap paradigm. At longer latencies scores improved considerably for latencies longer than 160 ms . This was in line with an improvement in accuracy for single targets up to 160 ms . Our results indicate that processing both of reward information and of stimulus saliency affect the programming of saccades, with a dominating contribution of stimulus saliency for eye movements with faster latencies.

© 2009 Optical Society of America

OCIS Codes
(330.2210) Vision, color, and visual optics : Vision - eye movements
(330.4060) Vision, color, and visual optics : Vision modeling

History
Original Manuscript: March 11, 2009
Revised Manuscript: June 26, 2009
Manuscript Accepted: July 6, 2009
Published: August 18, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Martin Stritzke, Julia Trommershäuser, and Karl R. Gegenfurtner, "Effects of salience and reward information during saccadic decisions under risk," J. Opt. Soc. Am. A 26, B1-B13 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-26-11-B1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. E. Javal, “Essai sur la physiologie de la lecture,” Ann. Ocul. (Paris) 70, 97-117 (1878).
  2. R. Dodge, “Five types of eye movement in the horizontal meridian plane of the field of regard,” Ann. Inst. Henri Poincare 8, 307-329 (1903).
  3. R. H. S. Carpenter, Movements of the Eyes (Pion, 1988).
  4. J. Najemnik and W. S. Geisler, “Optimal eye movement strategies in visual search,” Nature 343, 387-390 (2005). [CrossRef]
  5. B. J. White, M. Stritzke, and K. R. Gegenfurtner, “Saccadic facilitation in natural backgrounds,” Curr. Biol. 18, 124-128 (2008). [CrossRef] [PubMed]
  6. D. P. Munoz, “Commentary: Saccadic eye movements: overview of neural circuitry,” Prog. Brain Res. 140, 89-96 (2002). [CrossRef]
  7. R. J. Krauzlis, D. Liston, and C. D. Carello, “Target selection and the superior colliculus: goals, choices and hypotheses,” Vision Res. 44, 1445-1451 (2004). [CrossRef] [PubMed]
  8. P. W. Glimcher, “Making choices: the neurophysiology of visual-saccadic decision making,” Trends Neurosci. 24, 654-659 (2001). [CrossRef] [PubMed]
  9. M. L. Platt and P. W. Glimcher, “Neural correlates of decision variables in parietal cortex,” Nature 400, 233-238 (1999). [CrossRef] [PubMed]
  10. W. Schultz, “Behavioral theories and the neurophysiology of reward,” Annu. Rev. Psychol. 57, 87-115 (2006). [CrossRef]
  11. L. P. Sugrue, G. S. Corrado, and W. T. Newsome, “Choosing the greater of two goods: neural currencies for valuation and decision making,” Nat. Rev. Neurosci. 6, 363-375 (2005). [CrossRef] [PubMed]
  12. J. D. Roitman and M. N. Shadlen, “Response of neurons in the lateral intra-parietal area during a combined visual discrimination reaction time task,” J. Neurosci. 22, 9475-9489 (2002). [PubMed]
  13. L. P. Sugrue, G. S. Corrado, and W. T. Newsome, “Matching behavior and the representation of value in the parietal cortex,” Science 304, 1782-1787 (2004). [CrossRef] [PubMed]
  14. C. L. Colby, J. R. Duhamel, and M. E. Goldberg, “Visual, presaccadic and cognitive activation of single neurons in monkey lateral intraparietal area,” J. Neurophysiol. 76, 2841-2852 (1996). [PubMed]
  15. R. A. Andersen and C. A. Buneo, “Intentional maps in posterior parietal cortex,” Annu. Rev. Neurosci. 25, 189-220 (2002). [CrossRef] [PubMed]
  16. C. L. Colby and M. E. Goldberg, “Space and attention in parietal cortex,” Annu. Rev. Neurosci. 22, 319-349 (1999). [CrossRef] [PubMed]
  17. J. W. Bisley and M. E. Goldberg, “Neuronal activity in the lateral intraparietal area and spatial attention,” Science 299, 81-85 (2003). [CrossRef] [PubMed]
  18. D. M. Milstein and M. C. Dorris, “The influence of expected value on saccadic preparation,” J. Neurosci. 27, 4810-4818 (2007). [CrossRef] [PubMed]
  19. S. Musallam, B. D. Corneil, B. Greger, H. Scherberger, and R. A. Andersen, “Cognitive control signals for neural prosthetics,” Science 305, 258-262 (2004). [CrossRef] [PubMed]
  20. J. Trommershäuser, L. T. Maloney, and M. S. Landy, “Decision making, movement planning, and statistical secision theory,” Trends Cog. Sci. 12, 291-297 (2008). [CrossRef]
  21. J. Trommershäuser, M. S. Landy, and L. T. Maloney, “The expected utility of movement,” in Neuroeconomics: Decision Making and the Brain, P.W.Glimcher, C.F.Camerer, E.Fehr, and R.A.Poldrack, eds. (Elsevier, 2009), pp. 95-111.
  22. J. Trommershäuser, L. T. Maloney, and M. S. Landy, “Statistical decision theory and the selection of rapid, goal-directed movements,” J. Opt. Soc. Am. A 20, 1419-1433 (2003). [CrossRef]
  23. J. Trommershäuser, L. T. Maloney, and M. S. Landy, “Statistical decision theory and trade-offs in the control of motor response,” Spatial Vis. 16, 255-275 (2003). [CrossRef]
  24. J. Trommershäuser, M. S. Landy, and L. T. Maloney, “Humans rapidly estimate expected gain in movement planning,” Psychol. Sci. 17, 981-988 (2006). [CrossRef] [PubMed]
  25. J. Trommershäuser, S. Gepshtein, L. T. Maloney, M. S. Landy, and M. S. Banks, “Optimal compensation for changes in task-relevant movement variability,” J. Neurosci. 25, 7169-7178 (2005). [CrossRef] [PubMed]
  26. J. Trommershäuser, J. Mattis, L. T. Maloney, and M. S. Landy, “Limits to human movement planning with delayed and unpredictable onset of needed information,” Exp. Brain Res. 175, 276-284 (2006). [CrossRef] [PubMed]
  27. M. Stritzke and J. Trommershäuser, “Eye movements during rapid pointing under risk,” Vision Res. 47, 2000-2009 (2007). [CrossRef] [PubMed]
  28. A. Seydell, S. Schmidt, J. Trommershäuser, P. Kahder, K. Jost, H. Lachnit, and F. Rösler, eds., “Optimal performance in a cognitive probabilistic decision-task,” in Tagung Experimentell Arbeitender Psychologen (TeaP) (Pabst Science Publishers, 2008), p. 199 (conference abstract).
  29. J. M. Findlay and R. Walker, “A model of saccade generation based on parallel processing and competitive inhibition,” Behav. Brain Sci. 22, 661-674 (1999). [CrossRef]
  30. M. G. Saslow, “Effects of components of displacement-step stimuli upon latency for saccadic eye movement,” J. Opt. Soc. Am. 57, 1024-1029 (1967). [CrossRef] [PubMed]
  31. L. E. Ross and S. M. Ross, “Saccade latency and warning signals: stimulus onset, offset, and change as warning events,” Percept. Psychophys. 27, 251-257 (1980). [CrossRef] [PubMed]
  32. A. Kingstone and R. M. Klein, “Visual offsets facilitate saccadic latency: does predisengagement of visuospatial attention mediate this gap effect?” J. Exp. Psychol. 19, 1251-1265 (1993).
  33. C. Morvan and L. T. Maloney, “Suboptimal selection of initial saccade in a visual search task,” J. Vision 9, 444 (2009) (conference abstract). [CrossRef]
  34. A. J. van Opstal and J. A. van Gisbergen, “Scatter in the metrics of saccades and properties of the collicular motor map,” Vision Res. 29, 1183-1196 (1989). [CrossRef] [PubMed]
  35. R. J. van Beers, “The sources of variability in saccadic eye movements,” J. Neurosci. 27, 8757-8770 (2007). [CrossRef] [PubMed]
  36. R. J. Leigh and D. S. Zee, “The saccadic system,” in The Neurology of Eye Movements (Oxford Univ. Press, 2006), pp. 108-187.
  37. J. M. White, D. L. Sparks, and T. R. Stanford, “Saccades to remembered target locations: an analysis of systematic and variable errors,” Vision Res. 34, 79-92 (1994). [CrossRef] [PubMed]
  38. J. A. Saunders and D. C. Knill, “Visual feedback control of hand movements,” J. Neurosci. 24, 3223-3234 (2004). [CrossRef] [PubMed]
  39. D. Elliott, “Use of visual feedback during radpi aiming at a moving target,” Percept. Mot. Skills 76, 690 (1993). [CrossRef] [PubMed]
  40. D. Panchuk and J. N. Vickers, “Gaze behaviors of goaltenders under spatial-temporal constraints,” Hum. Mov. Sci. 25, 733-752 (2006). [CrossRef] [PubMed]
  41. M. F. Land and P. McLeod, “From eye movements to actions: how batsmen hit the ball,” Nat. Neurosci. 3, 1340-1345 (2000). [CrossRef] [PubMed]
  42. G. Binsted, R. Chua, W. Helsen, and D. Elliott, “Eye-hand coordination in goal-directed aiming,” Hum. Mov. Sci. 20, 563-585 (2001). [CrossRef] [PubMed]
  43. P. L. Gribble, S. Everling, K. Ford, and A. Mattar, “Hand-eye coordination for rapid pointing movements,” Exp. Brain Res. 145, 372-382 (2002). [CrossRef] [PubMed]
  44. J. A. Droll, K. Gigone, and M. M. Hayhoe, “Learning where to direct gaze during change detection,” J. Vision 7, 6.1-6.12 (2007). [CrossRef]
  45. L. Itti and C. Koch, “A saliency-based search mechanism for overt and covert shifts of visual attention,” Vision Res. 40, 1489-1506 (2000). [CrossRef] [PubMed]
  46. L. Itti and C. Koch, “Computational modelling of visual attention,” Nat. Rev. Neurosci. 2, 194-203 (2001). [CrossRef] [PubMed]
  47. D. Whitaker, P. V. McGraw, I. Pacey, and B. T. Barrett, “Centroid analysis predicts visual localization of first- and second-order stimuli,” Vision Res. 36, 2957-2970 (1996). [CrossRef] [PubMed]
  48. D. Vishwanath, E. Kowler, and J. Feldman, “Saccadic localization of occluded targets,” Vision Res. 40, 2797-2811 (2000). [CrossRef] [PubMed]
  49. B. W. Tatler, N. J. Wade, and K. Kaulard, “Examining art: Dissociating pattern and perceptual influences on oculomotor behaviour,” Spatial Vis. 21, 165-184 (2007). [CrossRef]
  50. C. A. Rothkopf, D. H. Ballard, and M. M. Hayhoe, “Task and context determine where you look,” J. Vision 7, 16.1-20 (2007). [CrossRef]
  51. W. Einhäuser, U. Rutishauser, and C. Koch, “Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli,” J. Vision 8, 1-19 (2008). [CrossRef]
  52. W. S. Geisler, J. S. Perry, and J. Najemnik, “Visual search: the role of peripheral information measured using gaze-contingent displays,” J. Vision 6, 858-873 (2006). [CrossRef]
  53. J. Najemnik and W. S. Geisler, “Eye movement statistics in humans are consistent with an optimal search strategy,” J. Vision 8, 1-14 (2008). [CrossRef]
  54. M. P. Eckstein, B. A. Drescher, and S. S. Shimozaki, “Attentional cues in real scenes, saccadic targeting, and Bayesian priors,” Psychonomic Sci. 17, 973-980 (2006). [CrossRef]
  55. S. Fuller, R. Z. Rodrigez, and M. Carrasco, “Apparent contrast differs across the vertical meridian: visual and attentional factors,” J. Vision 8, 16.1-16 (2008). [CrossRef]
  56. M. B. Neider and G. J. Zelinsky, “Scene context guides eye movements during visual search,” Vision Res. 46, 614-621 (2006). [CrossRef]
  57. A. Torralba, A. Oliva, M. S. Castelhano, and J. M. Henderson, “Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search,” Psychol. Rev. 113, 766-786 (2006). [CrossRef] [PubMed]
  58. H. Weber, N. Dürr, and B. Fischer, “Effects of pre-cues on voluntary and reflexive saccade generation. II. Pro-cues for anti-saccades,” Exp. Brain Res. 120, 417-431 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited