OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 13 — Dec. 2, 2009

Approaching ideal observer efficiency in using color to retrieve information from natural scenes

David H. Foster, Iván Marín-Franch, Kinjiro Amano, and Sérgio M.C. Nascimento  »View Author Affiliations


JOSA A, Vol. 26, Issue 11, pp. B14-B24 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000B14


View Full Text Article

Enhanced HTML    Acrobat PDF (586 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Variations in illumination on a scene and trichromatic sampling by the eye limit inferences about scene content. The aim of this work was to elucidate these limits in relation to an ideal observer using color signals alone. Simulations were based on 50 hyperspectral images of natural scenes and daylight illuminants with correlated color temperatures 4000 K , 6500 K , and 25,000 K . Estimates were made of the (Shannon) information available from each scene, the redundancies in receptoral and postreceptoral coding, and the information retrieved by an observer identifying corresponding points across image pairs. For the largest illuminant difference, between 25,000 K and 4000 K , a postreceptoral transformation providing minimum redundancy yielded an efficiency of about 80% in the information retrieved. This increased to about 89% when the transformation was optimized directly for information retrieved, corresponding to an equivalent Gaussian noise amplitude of 3.0% or to a mean of 3.6 × 10 4 distinct identifiable points per scene. Using color signals to retrieve information from natural scenes can approach ideal observer efficiency levels.

© 2009 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling
(330.1715) Vision, color, and visual optics : Color, rendering and metamerism
(110.3055) Imaging systems : Information theoretical analysis

History
Original Manuscript: February 2, 2009
Revised Manuscript: June 17, 2009
Manuscript Accepted: July 12, 2009
Published: August 31, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Citation
David H. Foster, Iván Marín-Franch, Kinjiro Amano, and Sérgio M. C. Nascimento, "Approaching ideal observer efficiency in using color to retrieve information from natural scenes," J. Opt. Soc. Am. A 26, B14-B24 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-26-11-B14


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  2. D. H. Foster, S. M. C. Nascimento, and K. Amano, “Information limits on neural identification of colored surfaces in natural scenes,” Visual Neurosci. 21, 331-336 (2004). [CrossRef]
  3. D. H. Foster, S. M. C. Nascimento, and K. Amano, “Information limits on identification of natural surfaces by apparent colour,” Perception 34, 1003-1008 (2005). [CrossRef] [PubMed]
  4. W. S. Geisler, “Visual perception and the statistical properties of natural scenes,” Annu. Rev. Psychol. 59, 167-192 (2008). [CrossRef]
  5. N. J. Dominy, J.-C. Svenning, and W.-H. Li, “Historical contingency in the evolution of primate color vision,” J. Human Evolution 44, 25-45 (2003). [CrossRef]
  6. C. E. Shannon, “A mathematical theory of communication,” [part 1] Bell Syst. Tech. J. 27, 379-423 (1948).
  7. C. E. Shannon, “A mathematical theory of communication,” [part 2] Bell Syst. Tech. J. 27, 623-656 (1948).
  8. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991). [CrossRef]
  9. G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. London, Ser. B 220, 89-113 (1983). [CrossRef]
  10. J. A. Swets, W. P. Tanner, Jr., and T. G. Birdsall, “Decision processes in perception,” Psychol. Rev. 68, 301-340 (1961). [CrossRef] [PubMed]
  11. N. A. Macmillan and C. D. Creelman, Detection Theory: A User's Guide, 2nd ed. (Erlbaum, 2005).
  12. D. H. Foster, K. Amano, S. M. C. Nascimento, and M. J. Foster, “Frequency of metamerism in natural scenes,” J. Opt. Soc. Am. A 23, 2359-2372 (2006). [CrossRef]
  13. M. Vorobyev and D. Osorio, “Receptor noise as a determinant of colour thresholds,” Proc. R. Soc. London, Ser. B 265, 351-358 (1998). [CrossRef]
  14. D. I. A. MacLeod and T. von der Twer, “The pleistochrome: optimal opponent codes for natural colours,” in Colour Perception: Mind and the Physical World, R.Mausfeld and D.Heyer, eds. (Oxford Univ. Press, 2003), pp. 155-184.
  15. D. H. Foster and R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?” Vision Res. 23, 787-797 (1983). [CrossRef] [PubMed]
  16. G. D. Finlayson, M. S. Drew, and B. V. Funt, “Spectral sharpening: sensor transformations for improved color constancy,” J. Opt. Soc. Am. A 11, 1553-1563 (1994). [CrossRef]
  17. R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. U.S.A. 97, 4997-5002 (2000). [CrossRef] [PubMed]
  18. J. von Kries, “Theoretische Studien über die Umstimmung des Sehorgans,” in Festschrift der Albrecht-Ludwigs-Universität (Freiburg, 1902), pp. 145-158.
  19. J. von Kries, “Die Gesichtsempfindungen,” in Handbuch der Physiologie des Menschen, W.Nagel, ed. (Vieweg, 1905), pp. 109-282.
  20. M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vision Res. 37, 3283-3298 (1997). [CrossRef]
  21. M. Studený and J. Vejnarová, “The multi-information function as a tool for measuring stochastic dependence,” in Learning in Graphical Models, M.I.Jordan, ed. (MIT Press, 1999), pp. 261-298.
  22. I. Marín-Franch and D. H. Foster, “Distribution of information within and across colour spaces,” in CGIV 2008 (Society for Imaging Science and Technology, 2008), pp. 303-306.
  23. K. Amano and D. H. Foster, “Colour constancy under simultaneous changes in surface position and illuminant,” Proc. R. Soc. London, Ser. B 271, 2319-2326 (2004). [CrossRef]
  24. A. Lapidoth, “Nearest neighbor decoding for additive non-Gaussian noise channels,” IEEE Trans. Inf. Theory 42, 1520-1529 (1996). [CrossRef]
  25. H. Barlow, “Redundancy reduction revisited,” Network Comput. Neural Syst. 12, 241-253 (2001). [CrossRef]
  26. G. D. Finlayson, M. S. Drew, and B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011-3019 (1994). [CrossRef]
  27. B. Funt and H. Jiang, “Non-von-Kries 3-parameter color prediction,” Proc. SPIE 5007, 182-189 (2003). [CrossRef]
  28. D. H. Foster and K. Żychaluk, “Is there a better non-parametric alternative to von Kries scaling?” in CGIV 2008 (Society for Imaging Science and Technology, 2008), pp. 41-44.
  29. S. M. C. Nascimento, F. P. Ferreira, and D. H. Foster, “Statistics of spatial cone-excitation ratios in natural scenes,” J. Opt. Soc. Am. A 19, 1484-1490 (2002). [CrossRef]
  30. CIE, “Colorimetry, 3rd Edition,” CIE Publication 15:2004 (CIE Central Bureau, Vienna, 2004).
  31. D. B. Judd, D. L. MacAdam, and G. Wyszecki, “Spectral distribution of typical daylight as a function of correlated color temperature,” J. Opt. Soc. Am. 54, 1031-1040 (1964). [CrossRef]
  32. J. Hernández-Andrés, J. Romero, and J. L. Nieves, “Color and spectral analysis of daylight in southern Europe,” J. Opt. Soc. Am. A 18, 1325-1335 (2001). [CrossRef]
  33. A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res. 39, 2901-2927 (1999). [CrossRef] [PubMed]
  34. A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711-1737 (2000). [CrossRef] [PubMed]
  35. B. W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman & Hall, London, 1986).
  36. A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual information,” Phys. Rev. E 69, 066138 (2004). [CrossRef]
  37. R. Steuer, J. Kurths, C. O. Daub, J. Weise, and J. Selbig, “The mutual information: Detecting and evaluating dependencies between variables,” Bioinformatics 18, S231-S240 (2002). [CrossRef] [PubMed]
  38. J. D. Victor, “Binless strategies for estimation of information from neural data,” Phys. Rev. E 66, 051903 (2002). [CrossRef]
  39. L. F. Kozachenko and N. N. Leonenko, “Sample estimate of the entropy of a random vector,” Probl. Inf. Transm. 23, 95-101 (1987); L. F. Kozachenko and N. N. Leonenko,Russian translation, Probl. Peredachi Inf. 23, 9-16 (1987).
  40. M. N. Goria, N. N. Leonenko, V. V. Mergel, and P. L. Novi Inverardi, “A new class of random vector entropy estimators and its applications in testing statistical hypotheses,” J. Nonparametric Statistics 17, 277-297 (2005). [CrossRef]
  41. I. Marín-Franch, “Information-theoretic analysis of trichromatic images of natural scenes under different phases of daylight,” Ph.D. thesis (The University of Manchester, Manchester, 2009).
  42. P. Grassberger, “Entropy estimates from insufficient samplings,” (2008), retrieved http://arxiv.org/abs/physics/0307138v2.
  43. W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74, 829-836 (1979). [CrossRef]
  44. J. J. M. Granzier, E. Brenner, and J. B. J. Smeets, “Reliable identification by color under natural conditions,” J. Vision 9, 1-8 (2009). [CrossRef]
  45. D. H. Foster, K. Amano, and S. M. C. Nascimento, “Color constancy in natural scenes explained by global image statistics,” Visual Neurosci. 23, 341-349 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited