OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 13 — Dec. 2, 2009

Characterizing perceptual performance at multiple discrimination precisions in external noise

Seong-Taek Jeon, Zhong-Lin Lu, and Barbara Anne Dosher  »View Author Affiliations

JOSA A, Vol. 26, Issue 11, pp. B43-B58 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (769 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Existing observer models developed for studies with the external noise paradigm are strictly applicable only to target detection or identification/discrimination of orthogonal target(s). We elaborated the perceptual template model (PTM) to account for contrast thresholds in identifying nonorthogonal targets. Full contrast psychometric functions were measured in an orientation identification task with four orientation differences across a wide range of external noise levels. We showed that observer performance can be modeled by the elaborated PTM with two templates that correspond to the two stimulus categories. Sampling efficiencies of the human observers were also estimated. The elaborated PTM provides a theoretical framework for characterizing joint feature and contrast sensitivity of human observers.

© 2009 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.4060) Vision, color, and visual optics : Vision modeling

Original Manuscript: December 18, 2008
Revised Manuscript: August 19, 2009
Manuscript Accepted: August 27, 2009
Published: October 5, 2009

Virtual Issues
Vol. 4, Iss. 13 Virtual Journal for Biomedical Optics

Seong-Taek Jeon, Zhong-Lin Lu, and Barbara Anne Dosher, "Characterizing perceptual performance at multiple discrimination precisions in external noise," J. Opt. Soc. Am. A 26, B43-B58 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Itti, C. Koch, and J. Braun, “Revisiting spatial vision: toward a unifying model,” J. Opt. Soc. Am. A 17, 1899-1917 (2000). [CrossRef]
  2. A. E. Burgess and B. Colborne, “Visual signal detection. IV. Observer inconsistency,” J. Opt. Soc. Am. A 5, 617-627 (1988). [CrossRef] [PubMed]
  3. M. P. Eckstein, A. J. Ahumada, and A. B. Watson, “Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise,” J. Opt. Soc. Am. A 14, 2406-2419 (1997). [CrossRef]
  4. D. Pelli, “Effects of visual noise,” Ph.D. dissertation (Cambridge Univ. 1981).
  5. Z.-L. Lu and B. A. Dosher, “Characterizing human perceptual inefficiencies with equivalent internal noise,” J. Opt. Soc. Am. A 16, 764-778 (1999). [CrossRef]
  6. Z. L. Lu and B. A. Dosher, “Characterizing observers using noise and observer models: assessing internal representations with external noise,” Psychol. Rev. 115, 44-82 (2008). [CrossRef] [PubMed]
  7. D. H. Kelly, “Spatial frequency selectivity in the retina,” Vision Res. 15, 665-672 (1975). [CrossRef] [PubMed]
  8. D. H. Kelly, “Motion and vision. II. Stabilized spatio-temporal threshold surface,” J. Opt. Soc. Am. 69, 1340-1349 (1979). [CrossRef] [PubMed]
  9. J. J. Koenderink, M. A. Bouman, A. E. Bueno de Mesquita, and S. Slappendel, “Perimetry of contrast detection thresholds of moving spatial sine wave patterns. IV. The influence of the mean retinal illuminance,” J. Opt. Soc. Am. 68, 860-865 (1978). [CrossRef] [PubMed]
  10. A. B. Watson, “Estimation of local spatial scale,” J. Opt. Soc. Am. A 4, 1579-1582 (1987). [CrossRef] [PubMed]
  11. J. Rovamo and V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495-510 (1979). [CrossRef] [PubMed]
  12. J. Rovamo, V. Virsu, and R. Nasanen, “Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision,” Nature 271, 54-56 (1978). [CrossRef] [PubMed]
  13. G. T. Plant, “Temporal properties of normal and abnormal spatial vision,” in Spatial Vision, D.Regan, ed. (CRC Press, 1991), pp. 43-63.
  14. D. Regan, “Spatiotemporal abnormalities of vision in patients with multiple sclerosis,” in Spatial Vision, D.Regan, ed. (CRC Press, 1991), pp. 239-249.
  15. R. F. Hess and E. R. Howell, “The threshold contrast sensitivity function in strabismic amblyopia: evidence for a two type classification,” Vision Res. 17, 1049-1055 (1977). [CrossRef] [PubMed]
  16. J. P. Thomas and J. Gille, “Bandwidths of orientation channels in human vision,” J. Opt. Soc. Am. 69, 652-660 (1979). [CrossRef] [PubMed]
  17. V. Virsu and J. Rovamo, “Visual resolution, contrast sensitivity, and the cortical magnification factor,” Exp. Brain Res. 37, 475-494 (1979). [CrossRef] [PubMed]
  18. B. C. Skottun, A. Bradley, G. Sclar, I. Ohzawa, and R. D. Freeman, “The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior,” J. Neurophysiol. 57, 773-786 (1987). [PubMed]
  19. B. G. Smith and J. P. Thomas, “Why are some spatial discriminations independent of contrast?” J. Opt. Soc. Am. A 6, 713-724 (1989). [CrossRef] [PubMed]
  20. S. F. Bowne, “Contrast discrimination cannot explain spatial frequency, orientation or temporal frequency discrimination,” Vision Res. 30, 449-461 (1990). [CrossRef] [PubMed]
  21. P. Vazquez, M. Cano, and C. Acuna, “Discrimination of line orientation in humans and monkeys,” J. Neurophysiol. 83, 2639-2648 (2000). [PubMed]
  22. D. G. Pelli and B. Farell, “Why use noise?” J. Opt. Soc. Am. A 16, 647-653 (1999). [CrossRef]
  23. D. M. Green, “Consistency of auditory detection judgments,” Psychol. Rev. 71, 392-407 (1964). [CrossRef] [PubMed]
  24. J. A. J. Ahumada and A. B. Watson, “Equivalent-noise model for contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1133-1139 (1985). [CrossRef] [PubMed]
  25. L. Kiorpes and J. A. Movshon, “Peripheral and central factors limiting the development of contrast sensitivity in Macaque monkeys,” Vision Res. 38, 61-70 (1998). [CrossRef] [PubMed]
  26. D. G. Pelli, “The quantum efficiency of vision,” in Vision: Coding and Efficiency, C.Blakemore, ed. (Cambridge Univ. Press, 1990), pp. 3-24.
  27. H. Fletcher, “Auditory patterns,” Rev. Mod. Phys. 12, 47-65 (1940). [CrossRef]
  28. H. B. Barlow, “Retinal noise and absolute threshold,” J. Opt. Soc. Am. 46, 634-639 (1956). [CrossRef] [PubMed]
  29. G. E. Legge, D. Kersten, and A. E. Burgess, “Contrast discrimination in noise,” J. Opt. Soc. Am. A 4, 391-404 (1987). [CrossRef] [PubMed]
  30. N. S. Nagaraja, “Effect of luminance noise on contrast thresholds,” J. Opt. Soc. Am. 54, 950-955 (1964). [CrossRef]
  31. A. J. Ahumada and J. Lovell, “Stimulus features in signal detection,” J. Acoust. Soc. Am. 49, 1751-1756 (1971). [CrossRef]
  32. H. T. Friis, “Noise figures of radio receivers,” Proc. IRE 32, 419-422 (1944). [CrossRef]
  33. W. W. Mumford and E. H. Schelbe, Noise Performance Factors in Communication Systems (Horizon House-Microwave Inc., 1968).
  34. D. O. North, “The absolute sensitivity of radio receivers,” RCA Rev. 6, 332-344 (1942).
  35. A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, “Efficiency of human visual signal discrimination,” Science 214, 93-94 (1981). [CrossRef] [PubMed]
  36. C. E. Bos and E. Deboer, “Masking and discrimination,” J. Acoust. Soc. Am. 39, 708-& (1966). [CrossRef]
  37. E. Eijkman, J. M. Thijssen, and A. J. Vendrik, “Weber's law, power law, and internal noise,” J. Acoust. Soc. Am. 40, 1164-1173 (1966). [CrossRef] [PubMed]
  38. W. M. Hartmann and J. Pumplin, “Noise power fluctuations and the masking of sine signals,” J. Acoust. Soc. Am. 83, 2277-2289 (1988). [CrossRef] [PubMed]
  39. L. E. Humes and W. Jesteadt, “Models of the additivity of masking,” J. Acoust. Soc. Am. 85, 1285-1294 (1989). [CrossRef] [PubMed]
  40. B. C. J. Moore, “Mechanisms of masking,” J. Acoust. Soc. Am. 57, 391-399 (1975). [CrossRef] [PubMed]
  41. E. Osman, “A correlation model of binaural masking level differences,” J. Acoust. Soc. Am. 50, 1494-1511 (1971). [CrossRef]
  42. V. M. Richards, L. M. Heller, and D. M. Green, “The detection of a tone added to a narrow band of noise: the energy model revisited,” Q. J. Exp. Psychol. 43, 481-501 (1991). [CrossRef]
  43. A. J. Ahumada, “Putting the visual system noise back in the picture,” J. Opt. Soc. Am. A 4, 2372-2378 (1987). [CrossRef] [PubMed]
  44. M. D'Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vision Res. 38, 3117-3128 (1998). [CrossRef]
  45. K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880-1888 (1992). [CrossRef] [PubMed]
  46. W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267-314 (1989). [CrossRef] [PubMed]
  47. G. A. Hay and M. S. Chesters, “Signal-transfer functions in threshold and suprathreshold vision,” J. Opt. Soc. Am. 62, 990-998 (1972). [CrossRef] [PubMed]
  48. Z.-L. Lu and B. A. Dosher, “Characterizing the spatial-frequency sensitivity of perceptual templates,” J. Opt. Soc. Am. A 18, 2041-2053 (2001). [CrossRef]
  49. A. Rose, “The sensitivity performance of the human eye on an absolute scale,” J. Opt. Soc. Am. A 38, 196-208 (1948). [CrossRef]
  50. W. P. Tanner, Jr., and T. G. Birdsall, “Definitions of d′ and n as psychophysical measures,” J. Acoust. Soc. Am. 30, 922-928 (1958). [CrossRef]
  51. B. S. Tjan, W. L. Braje, G. E. Legge, and D. Kersten, “Human efficiency for recognizing 3-D objects in luminance noise,” Vision Res. 35, 3053-3069 (1995). [CrossRef] [PubMed]
  52. A. Van Meeteren and H. B. Barlow, “The statistical efficiency for detecting sinusoidal modulation of average dot density in random figures,” Vision Res. 21, 765-777 (1981). [CrossRef] [PubMed]
  53. Z.-L. Lu and B. A. Dosher, “External noise distinguishes attention mechanisms,” Vision Res. 38, 1183-1198 (1998). [CrossRef] [PubMed]
  54. B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual attention in precuing of location,” Vision Res. 40, 1269-1292 (2000). [CrossRef] [PubMed]
  55. B. A. Dosher and Z.-L. Lu, “Noise exclusion in spatial attention,” Psychol. Sci. 11, 139-146 (2000). [CrossRef]
  56. D. G. Pelli, “Uncertainty explains many aspects of visual contrast detection and discrimination,” J. Opt. Soc. Am. A 2, 1508-1531 (1985). [CrossRef] [PubMed]
  57. J. Nachmias and R. V. Sansbury, “Grating contrast: discrimination may be better than detection,” Vision Res. 14, 1039-1042 (1974). [CrossRef] [PubMed]
  58. J. M. Foley and G. E. Legge, “Contrast detection and near-threshold discrimination in human vision,” Vision Res. 21, 1041-1053 (1981). [CrossRef] [PubMed]
  59. G. E. Legge and J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458-1471 (1980). [CrossRef] [PubMed]
  60. S. A. Klein and D. M. Levi, “Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation,” J. Opt. Soc. Am. A 2, 1170-1190 (1985). [CrossRef] [PubMed]
  61. J. M. Foley, “Human luminance pattern-vision mechanisms: masking experiments require a new model,” J. Opt. Soc. Am. A 11, 1710-1719 (1994). [CrossRef]
  62. A. B. Watson and J. A. Solomon, “Model of visual contrast gain control and pattern masking,” J. Opt. Soc. Am. A 14, 2379-2391 (1997). [CrossRef]
  63. A. Gorea and D. Sagi, “Disentangling signal from noise in visual contrast discrimination,” Nat. Neurosci. 4, 1146-1150 (2001). [CrossRef] [PubMed]
  64. R. E. Fredericksen and R. F. Hess, “Temporal detection in human vision: Dependence on stimulus energy,” J. Opt. Soc. Am. A 14, 2557-2569 (1997). [CrossRef]
  65. L. L. Kontsevich, C. C. Chen, and C. W. Tyler, “Separating the effects of response nonlinearity and internal noise psychophysically,” Vision Res. 42, 1771-1784 (2002). [CrossRef] [PubMed]
  66. L. A. Olzak and J. P. Thomas, “Neural recoding in human pattern vision: model and mechanisms,” Vision Res. 39, 231-256 (1999). [CrossRef] [PubMed]
  67. L. Itti, J. Braun, and C. Koch, “Modelling the modulatory effect of attention on human spatial vision,” in Advances in Neural Information Processing Systems, T.G.Ditterich, S.Becker, and Z.Ghahramani, eds. (MIT Press, 2002), pp. 1247-1254.
  68. J. A. Solomon and M. J. Morgan, “Stochastic re-calibration: contextual effects on perceived tilt,” Proc. R. Soc., London, Ser. B 273, 2681-2686 (2006). [CrossRef]
  69. D. H. Brainard, “The Psychophysics Toolbox,” Spatial Vis. 10, 433-436 (1997). [CrossRef]
  70. X. Li, Z.-L. Lu, P. Xu, J. Jin, and Y. Zhou, “Generating high gray-level resolution monochrome displays with conventional computer graphics cards and color monitors,” J. Neurosci. Methods 130, 9-18 (2003). [CrossRef] [PubMed]
  71. Z. L. Lu and G. Sperling, “Second-order reversed phi,” Percept. Psychophys. 61, 1075-1088 (1999). [CrossRef] [PubMed]
  72. F. A. Wichmann and N. J. Hill, “The psychometric function: I. Fitting, sampling, and goodness of fit,” Percept. Psychophys. 63, 1293-1313 (2001). [CrossRef]
  73. JS could not perform better than 85% correct in the highest external noise condition in some of the orientation difference conditions. We excluded his data in that condition in all the analysis.
  74. L. T. Maloney, “Confidence Intervals for the parameters of psychometric functions,” Percept. Psychophys. 47, 127-134 (1990). [CrossRef] [PubMed]
  75. D. P. Andrews, “Perception of contours in the central fovea,” Nature 205, 1218-1220 (1965). [CrossRef]
  76. W. S. Geisler, “Physical limits of acuity and hyperacuity,” J. Opt. Soc. Am. A 1, 775-782 (1984). [CrossRef] [PubMed]
  77. Dosher and Lu (2000) showed that the stochastic PTM exhibits all the key characteristics derived for the simplified (analytic) PTM. In general, the analytic PTM is a close approximation to the stochastic PTM and provides a good approach to model testing: The (analytic) PTM fits all the data we have collected very well. In the special case when γ = 1.0, the (analytic) PTM is identical to the stochastic PTM. In the two extreme regions of the external noise manipulation, i. e., when internal additive noise dominates or when external noise dominates, the (analytic) PTM model approaches the stochastic model asymptotically.
  78. In the ePTM development, the external noise in the stimulus had a Gaussian distribution, corresponding to white external noise. After nonlinear transduction, the distribution of the external noise might deviate from the Gaussian distribution. Spatial and temporal summation in the perceptual system should reduce this deviation. When combined with additive and multiplicative noises, both of which are Gaussian distributed, we assume that the sum of the noises is approximately Gaussian. However, we restrict ourselves to performance levels below 90% so as to avoid the tails of the distribution. The Gaussian assumption is not central to the development of the PTM outlined above, but it does simplify the application to signal detection estimation: the Gaussian noise distribution allows us to use the Gaussian form of signal detection calculations.
  79. For a Gaussian random variable R with mean 0 and standard deviation NextσTN, the standard deviation of sign(R)abs(R)γ1 is Nextγ1σTNγ1Fγ1(γ1)...F(γ1)=1.00, 1.07, 1.14, 1.20, 1.26, 1.32, 1.37, 1.42, 1.47, 1.52, and 1.57, for = 1.0, 1.2, ..., 3.0.
  80. B. A. Dosher and Z.-L. Lu, “Mechanisms of perceptual learning,” Vision Res. 39, 3197-3221 (1999). [CrossRef] [PubMed]
  81. Z.-L. Lu and B. A. Dosher, “Spatial attention: Different mechanisms for central and peripheral temporal precues?” J. Exp. Psychol. 26, 1534-1548 (2000).
  82. G. Westheimer and E. J. Ley, “Spatial and Temporal Integration of Signals in Foveal Line Orientation,” J. Neurophysiol. 77, 2677-2684 (1997). [PubMed]
  83. This logic could be extended to consider more than two templates with an appropriate decision rule for identification tasks with more than two stimuli.
  84. D. H. Parish and G. Sperling, “Object spatial frequencies, retinal spatial frequencies, noise, an the efficiency of letter discrimination,” Vision Res. 31, 1399-1415 (1991). [CrossRef] [PubMed]
  85. M. J. Morgan, “Hyperacuity,” in Spatial Vision, D.Regan, ed. (CRC Press, 1991), pp. 87-113.
  86. B. L. Beard and J. A. J. Ahumada, “Detection in fixed and random noise in foveal and parafoveal vision explained by template learning,” J. Opt. Soc. Am. A 16, 755-763 (1999). [CrossRef]
  87. B. A. Dosher, S.-H. Liu, N. Blair, and Z.-L. Lu, “The spatial window of the perceptual template and endogenous attention,” Vision Res. 44, 1257-1271 (2004). [CrossRef] [PubMed]
  88. A. Burgess, “Effect of quantization noise on visual signal detection in noisy images,” J. Opt. Soc. Am. A 2, 1424-1428 (1985). [CrossRef] [PubMed]
  89. J. A. Solomon and D. G. Pelli, “The visual filter mediating letter identification,” Nature 369, 395-397 (1994). [CrossRef] [PubMed]
  90. R. L. De Valois, E. William Yund, and N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531-544 (1982). [CrossRef] [PubMed]
  91. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat's visual cortex,” J. Physiol. (London) 160, 106-154 (1962).
  92. A. Bradley, B. C. Skottun, I. Ohzawa, G. Sclar, and R. D. Freeman, “Visual orientation and spatial frequency discrimination: a comparison of single neurons and behavior,” J. Neurophysiol. 57, 755-772 (1987). [PubMed]
  93. F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).
  94. P. Makela, D. Whitaker, and J. Rovamo, “Modelling of orientation discrimination across the visual field,” Vision Res. 33, 723-730 (1993). [CrossRef] [PubMed]
  95. S. J. Waugh, D. M. Levi, and T. Carney, “Orientation, masking, and vernier acuity for line targets,” Vision Res. 33, 1619-1638 (1993). [CrossRef] [PubMed]
  96. G. Westheimer, “Visual hyperacuity,” in Progress in Sensory Physiology, D.Ottoson, ed. (Springer, 1981), pp. 1-30. [CrossRef]
  97. J. Beck and T. Halloran, “Effects of spatial separation and retinal eccentricity on two-dot vernier acuity,” Vision Res. 25, 1105-1111 (1985). [CrossRef] [PubMed]
  98. D. Regan and K. I. Beverley, “Postadaptation orientation discrimination,” J. Opt. Soc. Am. A 2, 147-155 (1985). [CrossRef] [PubMed]
  99. G. Westheimer, K. Shimamura, and S. P. McKee, “Interference with line-orientation sensitivity,” J. Opt. Soc. Am. 66, 332-338 (1976). [CrossRef] [PubMed]
  100. H. R. Wilson and D. J. Gelb, “Modified line-element theory for spatial-frequency and width discrimination,” J. Opt. Soc. Am. A 1, 124-131 (1984). [CrossRef] [PubMed]
  101. H. R. Wilson and D. Regan, “Spatial-frequency adaptation and grating discrimination: predictions of a line-element model,” J. Opt. Soc. Am. A 1, 1091-1096 (1984). [CrossRef] [PubMed]
  102. R. Vogels and G. A. Orban, “How well do response changes of striate neurons signal differences in orientation: a study in the discriminating monkey,” J. Neurosci. 10, 3543-3558 (1990). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited