OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 1 — Jan. 4, 2010

High-resolution total-internal-reflection fluorescence microscopy using periodically nanostructured glass slides

Anne Sentenac, Kamal Belkebir, Hugues Giovannini, and Patrick C. Chaumet  »View Author Affiliations


JOSA A, Vol. 26, Issue 12, pp. 2550-2557 (2009)
http://dx.doi.org/10.1364/JOSAA.26.002550


View Full Text Article

Acrobat PDF (695 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compare the performance of a total-internal-reflection fluorescence microscope under varying illumination and substrate conditions. The samples are deposited on a standard homogeneous glass slide or on a grating and illuminated by one or two interfering beams at various incident angles. A conjugate gradient with positivity a priori information is used to reconstruct the fluorophore density from the images. Numerical studies demonstrate that when the sample lies on an optimized grating, the lateral resolution of the microscope is greatly improved, up to fourfold, the best result being obtained when the grating is illuminated by two interfering beams.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(110.0180) Imaging systems : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(180.3170) Microscopy : Interference microscopy

ToC Category:
Microscopy

History
Original Manuscript: April 16, 2009
Revised Manuscript: September 9, 2009
Manuscript Accepted: October 9, 2009
Published: November 9, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics
November 25, 2009 Spotlight on Optics

Citation
Anne Sentenac, Kamal Belkebir, Hugues Giovannini, and Patrick C. Chaumet, "High-resolution total-internal-reflection fluorescence microscopy using periodically nanostructured glass slides," J. Opt. Soc. Am. A 26, 2550-2557 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-26-12-2550


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C.Zander, J.Enderlein, and R.A.Keller, eds., Single Molecule Detection in Solution: Methods and Applications (Wiley-VCH Verlag, 2003).
  2. F. W. D. Rost, Fluorescence Microscopy, Vol. I (Cambridge Univ. Press, 1992).
  3. F. W. D. Rost, Fluorescence Microscopy, Vol. II (Cambridge Univ. Press, 1995).
  4. G. Cox and C. J. R. Sheppard, “Practical limits of resolution in confocal and non-linear microscopy,” Microsc. Res. Tech. 63, 18-22 (2004). [CrossRef]
  5. S. Hell, “Far-field optical nanoscopy,” Science 25, 1153-1158 (2007). [CrossRef]
  6. A. Stemmer, M. Beck, and R. Fiokla, “Widefield fluorescence microsocpy with extended resolution,” Histochem. Cell Biol. 130, 807-617 (2008). [CrossRef]
  7. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185-196 (2007). [CrossRef]
  8. O. Mandula, “Patterned excitation microscopy,” Master's thesis (Institute of Physics, King's College, 2008).
  9. G. Cragg and P. So, “Standing wave total-internal reflection microscopy,” Opt. Lett. 25, 46-48 (2000). [CrossRef]
  10. E. Chung, D. Kim, and P. So, “Extended resolution wide-field optical imaging objective-launched standing-wave total internal reflection fluorescence microscopy,” Opt. Lett. 31, 945-947 (2006). [CrossRef]
  11. D. Toomre and D. J. Manstein, “Lighting up the cell surface with evanescent wave microscope,” Trends Cell Biol. 11, 298-303 (2001). [CrossRef]
  12. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy: a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19, 1599-1609 (2002). [CrossRef]
  13. M. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081-13086 (2005). [CrossRef]
  14. A. Sentenac, K. Belkebir, H. Giovannini, and P. C. Chaumet, “Subdiffraction resolution in total internal reflection fluorescence microscopy with a grating substrate,” Opt. Lett. 33, 255-257 (2008). [CrossRef]
  15. A. L. Fehrembach, S. Enoch, and A. Sentenac, “Highly directive source devices using slab photonic crystal,” Appl. Phys. Lett. 79, 4280-4282 (2001). [CrossRef]
  16. R. Fiolka, M. Beck, and A. Stemmer, “Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator,” Opt. Lett. 33, 1629-1631 (2008). [CrossRef]
  17. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758-2767 (1997). [CrossRef]
  18. D. Maystre, Diffraction Gratings, SPIE Milestones Series (SPIE Press, 1993).
  19. A. L. Fehrembach, D. Maystre, and A. Sentenac, “Phenomenological theory of filtering by resonant dielectric gratings,” J. Opt. Soc. Am. A 19, 1136-1142 (2002). [CrossRef]
  20. J. Frohn, H. Knapp, and A. Stemmer, “True optical resolution, beyond the Rayleigh limit, achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97, 7232-7236 (2000). [CrossRef]
  21. P. C. Chaumet, K. Belkebir, and A. Sentenac, “Three-dimensional sub-wavelength optical imaging using the coupled dipole method,” Phys. Rev. B 69, 245405-7 (2004). [CrossRef]
  22. K. Belkebir and A. Sentenac, “High-resolution optical diffraction microscopy,” J. Opt. Soc. Am. A 20, 1223-1229 (2003). [CrossRef]
  23. K. Belkebir and A. G. Tijhuis, “Modified2 gradient method and modified Born method for solving a two-dimensional inverse scattering problem,” Inverse Probl. 17, 1671-1688 (2001). [CrossRef]
  24. A. Dubois, K. Belkebir, and M. Saillard, “Retrieval of inhomogeneous targets from experimental frequency diversity data,” Inverse Probl. 21, S65-S79 (2005). [CrossRef]
  25. G. R. Ayers and J. C. Dainty, “Iterative blind deconvolution method and its applications,” Opt. Lett. 13, 547-549 (1988). [CrossRef]
  26. A. Sentenac, P. C. Chaumet, and K. Belkebir, “Beyond the Rayleigh criterion: grating assisted far-field optical diffraction tomography,” Phys. Rev. Lett. 97, 243901-4 (2006). [CrossRef]
  27. P. C. Chaumet, K. Belkebir, and A. Sentenac, “Numerical study of grating-assisted optical diffraction tomography,” Phys. Rev. A 76, 013814-7 (2007). [CrossRef]
  28. A. Sentenac and P. C. Chaumet, “Sub-diffraction light focusing on a grating substrate,” Phys. Rev. Lett. 101, 013901-4 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited