OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 4 — Apr. 1, 2009

Estimating chromophore distributions from multiwavelength photoacoustic images

B. T. Cox, S. R. Arridge, and P. C. Beard  »View Author Affiliations


JOSA A, Vol. 26, Issue 2, pp. 443-455 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000443


View Full Text Article

Acrobat PDF (928 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Biomedical photoacoustic tomography (PAT) can provide qualitative images of biomedical soft tissue with high spatial resolution. However, whether it is possible to give accurate quantitative estimates of the spatially varying concentrations of the sources of photoacoustic contrast—endogenous or exogenous chromophores—remains an open question. Even if the chromophores' absorption spectra are known, the problem is nonlinear and ill-posed. We describe a framework for obtaining such quantitative estimates. When the optical scattering distribution is known, adjoint and gradient-based optimization techniques can be used to recover the concentration distributions of the individual chromophores that contribute to the overall tissue absorption. When the scattering distribution is unknown, prior knowledge of the wavelength dependence of the scattering is shown to be sufficient to overcome the absorption-scattering nonuniqueness and allow both distributions of chromophore concentrations and scattering to be recovered from multiwavelength photoacoustic images.

© 2009 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 15, 2008
Manuscript Accepted: December 11, 2008
Published: January 30, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

Citation
B. T. Cox, S. R. Arridge, and P. C. Beard, "Estimating chromophore distributions from multiwavelength photoacoustic images," J. Opt. Soc. Am. A 26, 443-455 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-26-2-443


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. A. Kruger, P. Liu, Y. R. Fang, and C. R. Appledorn, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605-1609 (1995). [CrossRef]
  2. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648-650 (1998).
  3. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803-806 (2003). [CrossRef]
  4. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101 (2006). [CrossRef]
  5. E. Z. Zhang, J. G. Laufer, and P. C. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47, 561-577 (2008). [CrossRef]
  6. J. G. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005). [CrossRef]
  7. J. G. Laufer, C. Elwell, D. Delpy, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration,” Phys. Med. Biol. 52, 141-168 (2007). [CrossRef]
  8. M.-L. Li, J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, “Simultaneous molecular and hypoxia imaging of brain tumours in vivo using spectroscopic photoacoustic tomography,” Proc. IEEE 96, 481-489 (2008). [CrossRef]
  9. B. T. Cox, S. Arridge, K. Köstli, and P. Beard, “Quantitative photoacoustic imaging: fitting a model of light transport to the initial pressure distribution,” Proc. SPIE 5697, 49-55 (2005). [CrossRef]
  10. B. T. Cox, S. R. Arridge, K. Köstli, and P. C. Beard, “2D quantitative photoacoustic image reconstruction of absorption distributions in scattering media using a simple iterative method,” Appl. Opt. 45, 1866-1874 (2006). [CrossRef]
  11. K. Maslov, M. Sivaramakrishnan, H. F. Zhang, G. Stoica, and L. V. Wang, “Technical considerations in quantitative blood oxygenation measurement using photoacoustic microscopy in vivo,” Proc. SPIE 6086, 60860R (2006). [CrossRef]
  12. K. M. Stantz, B. Liu, M. Cao, D. Reinecke, K. Miller, and R. Kruger, “Photoacoustic spectroscopic imaging of intra-tumour heterogeneity and molecular identification,” Proc. SPIE 6086, 608605 (2006). [CrossRef]
  13. X. Wang, X. Xie, G. Ku, and L. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic imaging,” J. Biomed. Opt. 11, 024015 (2006). [CrossRef]
  14. K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl. 23, S113-S122 (2007). [CrossRef]
  15. M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, “Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels,” Phys. Med. Biol. 52, 1349-1361 (2008). [CrossRef]
  16. A. de la Zerda, C. Zavaleta, S. Kere, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, and S. S. Gambhir, “Carbon nanotubes as photoacoustic molecular imaging agents in living mice,” Nat. Nanotechnol. 3, 557-561 (2008). [CrossRef]
  17. B. T. Cox, S. R. Arridge, and P. C. Beard, “Simultaneous estimation of chromophore concentration and scattering distributions from multiwavelength photoacoustic images,” Proc. SPIE 6856, 68560Y (2008). [CrossRef]
  18. B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard, “K-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics,” J. Acoust. Soc. Am. 121, 3453-3464 (2007). [CrossRef]
  19. B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616-3627 (2005). [CrossRef]
  20. M. Agranovsky, P. Kuchment, and L. Kunyansky, “On reconstruction formulas and algorithms for thermoacoustic and photoacoustic tomography,” arXiv:0706.1303v1 (2007).
  21. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. Arridge, E. Hillman, and A. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44, 2082-2093 (2005). [CrossRef]
  22. A. J. Welch and M. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, 1995).
  23. T. L. Troy and S. N. Thenadil, “Optical properties of human skin in the near infrared wavelength range of 1000to2200 nm,” J. Biomed. Opt. 6, 167-176 (2001). [CrossRef]
  24. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400to2000 nm,” J. Phys. D: Appl. Phys. 38, 2543-2555 (2005). [CrossRef]
  25. S.-H. Tseng, A. Grant, and A. J. Durkin, “In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy,” J. Biomed. Opt. 13, 014016 (2008). [CrossRef]
  26. S. L. Jacques and L. Wang, “Monte Carlo Modeling of Light Transport in Tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J. C.Van Gemert, eds. (Plenum1995).
  27. L. Wang, S. L. Jacques, and L. Zheng, “MCML -Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef]
  28. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  29. S. Arridge, M. Schweiger, M. Hiraoka, and D. Delpy, “A finite element approach for modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993). [CrossRef]
  30. M. Schweiger, S. Arridge, M. Hiraoka, and D. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995). [CrossRef]
  31. Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88, 231101 (2006). [CrossRef]
  32. B. Banerjee, S. Bagchi, R. M. Vasu, and D. Roy, “Quantitative photoacoustic tomography from boundary pressure measurements: noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map,” J. Opt. Soc. Am. A 25, 2347-2356 (2008). [CrossRef]
  33. J. Ripoll and V. Ntziachristos, “Quantitative point source photoacoustic inversion formulas for scattering and absorbing media,” Phys. Rev. E 71, 031912 (2005). [CrossRef]
  34. L. Yin, Q. Wang, Q. Zhang, and H. Jiang, “Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements,” Opt. Lett. 32, 2556-2558 (2007). [CrossRef]
  35. Z. Yuan, Q. Wang, and H. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method,” Opt. Express 15, 18076-18081 (2007). [CrossRef]
  36. B. T. Cox, S. R. Arridge, and P. C. Beard, “Gradient-based quantitative photoacoustic image reconstruction for molecular imaging,” Proc. SPIE 6437, 64371T (2007).
  37. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C++, The Art of Scientific Computing (Cambridge U. Press, 2005).
  38. L. N. Trefethen and D. Bau, Numerical Linear Algebra (SIAM, 1997).
  39. P. C. Hansen, “Deconvolution and regularization with Toeplitz matrices,” Numer. Algorithms 29, 323-378 (2002).
  40. T. Spott and L. O. Svaasand, “Collimated light sources in the diffusion approximation,” Appl. Opt. 39, 6453-6465 (2000).
  41. B. T. Cox, S. R. Arridge, and P. C. Beard, “Quantitative photoacoustic image reconstruction for molecular imaging,” Proc. SPIE 6086, 60861M (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited