OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 5 — May. 5, 2009

Optical angular momentum transfer by Laguerre–Gaussian beams

Stephen H. Simpson and Simon Hanna  »View Author Affiliations

JOSA A, Vol. 26, Issue 3, pp. 625-638 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is well known that Laguerre–Gaussian beams carry angular momentum and that this angular momentum has a mechanical effect when such beams are incident on particles whose refractive indices differ from those of the background medium. Under conditions of tight focusing, intensity gradients arise that are sufficiently large to trap micrometer-sized particles, permitting these mechanical effects to be observed directly. In particular, when the particles are spherical and absorbing, they rotate steadily at a rate that is directly proportional to the theoretical angular momentum flux of the incident beam. We note that this behavior is peculiar to absorbing spheres. For arbitrary, axially placed particles the induced torque for rotation angle ζ is shown to be Γ z = A sin ( 2 ζ + δ ) + B , where A, B, and δ are constants that are determined by the mechanisms coupling optical and mechanical angular momentum. The resulting behavior need not be directly related to the total angular momentum in the beam but can, nonetheless, be understood in terms of an appropriate torque density. This observation is illustrated by calculations of the torque induced in optically and geometrically anisotropic particles using a T-matrix approach.

© 2009 Optical Society of America

OCIS Codes
(290.4020) Scattering : Mie theory
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

Original Manuscript: November 7, 2008
Revised Manuscript: January 8, 2009
Manuscript Accepted: January 13, 2009
Published: February 24, 2009

Virtual Issues
Vol. 4, Iss. 5 Virtual Journal for Biomedical Optics

Stephen H. Simpson and Simon Hanna, "Optical angular momentum transfer by Laguerre-Gaussian beams," J. Opt. Soc. Am. A 26, 625-638 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. H. Poynting, “The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light,” Proc. R. Soc. London, Ser. A 82, 560-567 (1909). [CrossRef]
  2. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50, 115-125 (1936). [CrossRef]
  3. A. H. S. Holbourn, “Angular momentum of circularly polarised light,” Nature (London) 137, 31 (1936). [CrossRef]
  4. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  5. S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B: Quantum Semiclassical Opt. 4, S7-S16 (2002). [CrossRef]
  6. L.Allen, S.M.Barnett, and M.J.Padgett, eds., Optical Angular Momentum (IOP, 2003). [CrossRef]
  7. S. J. van Enk and G. Nienhuis, “Spin and orbital angular-momentum of photons,” Europhys. Lett. 25, 497-501 (1994). [CrossRef]
  8. S. M. Barnett and L. Allen, “Orbital angular-momentum and nonparaxial light-beams,” Opt. Commun. 110, 670-678 (1994). [CrossRef]
  9. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064-4075 (1997). [CrossRef]
  10. M. J. Padgett, S. M. Barnett, and R. Loudon, “The angular momentum of light inside a dielectric,” J. Mod. Opt. 50, 1555-1562 (2003). [CrossRef]
  11. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular-momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826-829 (1995). [CrossRef] [PubMed]
  12. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593-1596 (1996). [CrossRef] [PubMed]
  13. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner,” Opt. Lett. 22, 52-54 (1997). [CrossRef] [PubMed]
  14. A. T. O'Neil and M. J. Padgett, “Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner,” Opt. Commun. 185, 139-143 (2000). [CrossRef]
  15. J. E. Molloy and M. J. Padgett, “Lights, action: optical tweezers,” Contemp. Phys. 43, 241-258 (2002). [CrossRef]
  16. T. A. Nieminen, S. Parkin, T. Asavei, V. L. Y. Loke, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical vortex trapping and the dynamics of particle rotation,” in Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, D.L.Andrews, ed. (Academic, 2008), Chap. 8, pp. 195-236.
  17. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2, 299-313 (2008). [CrossRef]
  18. S. H. Simpson and S. Hanna, “Numerical calculation of inter-particle forces arising in association with holographic assembly,” J. Opt. Soc. Am. A 23, 1419-1431 (2006). [CrossRef]
  19. J.-S. Kim and S.-W. Kim, “Dynamic motion analysis of optically trapped nonspherical particles with off-axis position and arbitrary orientation,” Appl. Opt. 39, 4327-4332 (2000). [CrossRef]
  20. W. A. Shelton, K. D. Bonin, and T. G. Walker, “Nonlinear motion of optically torqued nano-rods,” Phys. Rev. E 71, 036204 (2005). [CrossRef]
  21. K. D. Bonin, B. Kourmanov, and T. G. Walker, “Light torque nanocontrol, nanomotors and nanorockers,” Opt. Express 10, 984-989 (2002). [PubMed]
  22. R. C. Gauthier, “Optical levitation and trapping of a micro-optic inclined end-surface cylindrical spinner,” Appl. Opt. 40, 1961-1973 (2001). [CrossRef]
  23. N. R. Heckenberg, M. E. J. Friese, T. A. Nieminen, and H. Rubinsztein-Dunlop, “Mechanical effects of optical vortices,” in Optical Vortices, Vol. 228 of Horizons in World Physics, M.Vasnetsov and K.Staliunas, eds. (Nova Science, 1999), pp. 75-105.
  24. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Calculation and optical measurement of laser trapping forces on non-spherical particles,” J. Quant. Spectrosc. Radiat. Transf. 70, 627-637 (2001). [CrossRef]
  25. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468-471 (2001). [CrossRef]
  26. S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430-443 (2007). [CrossRef]
  27. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge U. Press, 2002).
  28. A. S. van de Nes and P. Török, “Rigorous analysis of spheres in Gauss-Laguerre beams,” Opt. Express 15, 13360-13374 (2007). [CrossRef] [PubMed]
  29. S. H. Simpson and S. Hanna, “Rotation of absorbing spheres in Laguerre-Gaussian beams,” J. Opt. Soc. Am. A 26, 173-183 (2009). [CrossRef]
  30. Z. F. Lin and S. T. Chui, “Electromagnetic scattering by optically anisotropic magnetic particle,” Phys. Rev. E 69, 056614 (2004). [CrossRef]
  31. I. Brevik, “Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor,” Phys. Rep., Phys. Lett. 52, 133-201 (1979). [CrossRef]
  32. R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Colloquium: Momentum of an electromagnetic wave in dielectric media,” Rev. Mod. Phys. 79, 1197-1216 (2007). [CrossRef]
  33. J. van Bladel, Singular Electromagnetic Fields and Sources (Clarendon Press, 1991).
  34. C. Konz and G. Benford, “Geometric absorption of electromagnetic angular momentum,” Opt. Commun. 226, 249-254 (2003). [CrossRef]
  35. T. A. Nieminen, “Comment on 'Geometric absorption of electromagnetic angular momentum,' C. Konz, G. Benford,” Opt. Commun. 235, 227-229 (2004). [CrossRef]
  36. G. Benford and C. Konz, “Reply to comment on 'Geometric absorption of electromagnetic angular momentum,'” Opt. Commun. 235, 231-232 (2004). [CrossRef]
  37. T. A. Nieminen, S. J. W. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque and symmetry,” Proc. SPIE 5514, 254-263(2004). [CrossRef]
  38. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594-4602 (1989). [CrossRef]
  39. S. H. Simpson, D. C. Benito, and S. Hanna, “Polarization-induced torque in optical traps,” Phys. Rev. A 76, 043408 (2007). [CrossRef]
  40. A. La Porta and M. D. Wang, “Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004). [CrossRef] [PubMed]
  41. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited