OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Application of signal-subspace and optimization methods in reconstructing extended scatterers

Xudong Chen  »View Author Affiliations


JOSA A, Vol. 26, Issue 4, pp. 1022-1026 (2009)
http://dx.doi.org/10.1364/JOSAA.26.001022


View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A signal-subspace approach to reconstruct the permittivities of extended scatterers in two-dimensional settings is proposed. A portion of the scatterers’ information is retrieved by the signal-subspace method, and the remaining part is obtained by solving a nonlinear least-squares problem. The method exhibits several strengths, including robustness against noise, fast convergence, less scattering data, high resolution, and the ability to deal with scatterers of special shapes.

© 2009 Optical Society of America

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(290.3200) Scattering : Inverse scattering

ToC Category:
Scattering

History
Original Manuscript: November 25, 2008
Revised Manuscript: February 11, 2009
Manuscript Accepted: February 12, 2009
Published: March 25, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Xudong Chen, "Application of signal-subspace and optimization methods in reconstructing extended scatterers," J. Opt. Soc. Am. A 26, 1022-1026 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-26-4-1022


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Ammari, E. Iakovleva, D. Lesselier, and G. Perruson, “MUSIC-type electromagnetic imaging of a collection of small three-dimensional bounded inclusions,” SIAM J. Sci. Comput. (USA) 29, 674-709 (2007). [CrossRef]
  2. E. Iakovleva, S. Gdoura, D. Lesselier, and G. Perrusson, “Multistatic response matrix of a 3-d inclusion in half space and MUSIC imaging,” IEEE Trans. Antennas Propag. 55, 2598-2609 (2007). [CrossRef]
  3. E. A. Marengo, R. D. Hernandez, and H. Lev-Ari, “Intensity-only signal-subspace-based imaging,” J. Opt. Soc. Am. A 24, 3619-3635 (2007). [CrossRef]
  4. E. A. Marengo and F. K. Gruber, “Subspace-based localization and inverse scattering of multiply scattering point targets,” EURASIP J. Adv. Signal Process. 2007, 17342 (2007). [CrossRef]
  5. X. Chen and Y. Zhong, “A robust noniterative method for obtaining scattering strengths of multiply scattering point targets,” J. Acoust. Soc. Am. 122, 1325-1327 (2007). [CrossRef] [PubMed]
  6. Y. Zhong and X. Chen, “MUSIC imaging and electromagnetic inverse scattering of multiply scattering small anisotropic spheres,” IEEE Trans. Antennas Propag. 55, 3542-3549 (2007). [CrossRef]
  7. X. Chen, “Signal-subspace method approach to intensity-only electromagnetic inverse scattering problem,” J. Opt. Soc. Am. A 25, 2018-2024 (2008). [CrossRef]
  8. K. Agarwal and X. Chen, “Applicability of MUSIC-type imaging in two-dimensional electromagnetic inverse problems,” IEEE Trans. Antennas Propag. 56, 3217-3223 (2008). [CrossRef]
  9. E. A. Marengo and F. K. Gruber, “Noniterative analytical formula for inverse scattering of multiply scattering point targets,” J. Acoust. Soc. Am. 120, 3782-3788 (2006). [CrossRef]
  10. A. Kirsch, “The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media,” Inverse Probl. 18, 1025-1040 (2002). [CrossRef]
  11. X. Chen and Y. Zhong, “MUSIC electromagnetic imaging with enhanced resolution for small inclusions,” Inverse Probl. 25, 015008 (2009). [CrossRef]
  12. E. A. Marengo, F. K. Gruber, and F. Simonetti, “Time-reversal MUSIC imaging of extended targets,” IEEE Trans. Image Process. 16, 1967-1984 (2007). [CrossRef] [PubMed]
  13. S. Hou, K. Solna, and H. Zhao, “A direct imaging algorithm for extended targets,” Inverse Probl. 22, 1151-1178 (2006). [CrossRef]
  14. T. M. Habashy, E. Y. Chow, and D. G. Dudley, “Profile inversion using the renormalized source-type integral equation approach,” IEEE Trans. Antennas Propag. 38, 668-681 (1990). [CrossRef]
  15. T. M. Habashy, M. L. Oristaglio, and A. T. D. Hoop, “Simultaneous nonlinear reconstruction of two dimensional permittivity and conductivity,” Radio Sci. 29, 1101-1118 (1994). [CrossRef]
  16. P. M. van den Berg and R. E. Kleinman, “A contrast source inversion method,” Inverse Probl. 13, 1607-1620 (1997). [CrossRef]
  17. A. Abubakar, T. M. Habashy, P. M. van den Berg, and D. Gisolf, “The diagonalized contrast source approach: an inversion method beyond the Born approximation,” Inverse Probl. 21, 685-702 (2005). [CrossRef]
  18. K. Belkebir, P. C. Chaumet, and A. Sentenac, “Superresolution in total internal reflection tomography,” J. Opt. Soc. Am. A 22, 1889-1897 (2005). [CrossRef]
  19. A. Lakhtakia, “Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetics fields,” Int. J. Mod. Phys. C 3, 583-603 (1992). [CrossRef]
  20. X. Chen and Y. Zhong, “Electromagnetic imaging of multiple-scattering small objects: noniterative analytical approach,” J. Phys.: Conf. Ser. 124, 012016 (2008). [CrossRef]
  21. X. Chen, “MUSIC imaging applied to total internal reflection tomography,” J. Opt. Soc. Am. A 25, 357-364 (2008). [CrossRef]
  22. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed. (Springer-Verlag, 1998).
  23. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge U. Press, 1985).
  24. I. Catapano, L. Crocco, and T. Isernia, “On simple methods for shape reconstruction of unknown scatterers,” IEEE Trans. Antennas Propag. 55, 1431-1436 (2007). [CrossRef]
  25. D. Colton and R. Kress, “Using fundamental solutions in inverse scattering,” Inverse Probl. 22, R49-R66 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited