OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Resolution-enhanced optical coherence tomography based on classical intensity interferometry

Hanna Lajunen, Víctor Torres-Company, Jesús Lancis, and Ari T. Friberg  »View Author Affiliations


JOSA A, Vol. 26, Issue 4, pp. 1049-1054 (2009)
http://dx.doi.org/10.1364/JOSAA.26.001049


View Full Text Article

Enhanced HTML    Acrobat PDF (236 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a fourth-order interference scheme for optical coherence tomography operating with broadband incoherent (or quasi-incoherent) light. It is shown that using this proposal, an axial resolution improvement by a factor of 2 and a better sensitivity for weakly reflecting samples are obtained than with the standard second-order correlation scheme. From a practical perspective, we suggest the use of broadband Q-switched pulses and performing ultrafast intensity correlation with a nonlinear crystal. The global performance of our proposal is illustrated by means of numerical simulations.

© 2009 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: October 27, 2008
Revised Manuscript: February 7, 2009
Manuscript Accepted: February 8, 2009
Published: March 31, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Hanna Lajunen, Víctor Torres-Company, Jesús Lancis, and Ari T. Friberg, "Resolution-enhanced optical coherence tomography based on classical intensity interferometry," J. Opt. Soc. Am. A 26, 1049-1054 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-26-4-1049


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinton, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  3. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005). [CrossRef]
  4. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221-1223 (1999). [CrossRef]
  5. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608-610 (2001). [CrossRef]
  6. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002). [CrossRef]
  7. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of dispersion-canceled quantum-optical coherence tomography,” Phys. Rev. Lett. 91, 083601 (2003). [CrossRef] [PubMed]
  8. B. I. Erkmen and J. H. Shapiro, “Phase-conjugate optical coherence tomography,” Phys. Rev. A 74, 041601 (2006). [CrossRef]
  9. K. J. Resch, P. Puvanathasan, J. S. Lundeen, M. V. Mitchell, and K. Bizheva, “Classical dispersion-cancellation interferometry,” Opt. Express 15, 8797-8804 (2007). [CrossRef] [PubMed]
  10. Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, “Second-harmonic optical coherence tomography,” Opt. Lett. 29, 1090-1092 (2003). [CrossRef]
  11. J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Pulifiato, R. Margolis, and A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 11, 150-152 (1986). [CrossRef] [PubMed]
  12. A. Pe'er, Y. Bromberg, B. Dayan, Y. Silberberg, and A. A. Friesem, “Broadband sum-frequency generation as an efficient two-photon detector for optical tomography,” Opt. Express 15, 8760-8769 (2007). [CrossRef] [PubMed]
  13. R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27-32 (1956). [CrossRef]
  14. Z. Y. Ou, E. C. Gage, B. E. Magill, and L. Mandel, “Fourth-order interference technique for determining the coherence time of a light beam,” J. Opt. Soc. Am. B 6, 100-103 (1989). [CrossRef]
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  16. R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature 178, 1046-1048 (1956). [CrossRef]
  17. R. A. Silverman, “Locally stationary random processes,” IRE Trans. Inf. Theory 3, 182-187 (1957). [CrossRef]
  18. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996).
  19. J. W. Goodman, Statistical Optics (Wiley-Interscience, 1985).
  20. M. Tomita and M. Matsuoka, “Ultrafast pump-probe measurement using intensity correlation of incoherent light,” J. Opt. Soc. Am. B 3, 560-563 (1986). [CrossRef]
  21. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancala, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299-309 (2004). [CrossRef] [PubMed]
  22. M. C. Teich, R. L. Abrams, and W. B. Gandrud, “Photon-correlation enhancement of SHG at 10.6 μm,” Opt. Commun. 2, 206-208 (1970). [CrossRef]
  23. Y. Qu and S. Singh, “Photon correlation effects in second harmonic generation,” Opt. Commun. 90, 111-114 (1992). [CrossRef]
  24. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610-615 (2001). [CrossRef] [PubMed]
  25. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, “Autofocus algorithm for dispersion correction in optical coherence tomography,” Appl. Opt. 42, 3038-3046 (2003). [CrossRef] [PubMed]
  26. K. Banaszek, A. S. Randunsky, and I. A. Walmsley, “Blind dispersion compensation for optical coherence tomography,” Opt. Commun. 269, 152-155 (2007). [CrossRef]
  27. V. Torres-Company, H. Lajunen, J. Lancis, and A. T. Friberg, “Ghost interference with classical partially coherent light pulses,” Phys. Rev. A 77, 043811 (2008). [CrossRef]
  28. V. Torres-Company, H. Lajunen, and A. T. Friberg, “Nonlocal dispersion cancellation with classical light and its application to remote spectral transfer,” (submitted to New J. Phys., 2009).
  29. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044 (1987). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited