OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm

Day-Uei Li, Richard Walker, Justin Richardson, Bruce Rae, Alex Buts, David Renshaw, and Robert Henderson  »View Author Affiliations


JOSA A, Vol. 26, Issue 4, pp. 804-814 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000804


View Full Text Article

Enhanced HTML    Acrobat PDF (1263 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new integration based fluorescence lifetime imaging microscopy (FLIM) called IEM has been proposed to implement lifetime extraction [ J. Opt. Soc. Am. A 25, 1190 (2008) ]. A real-time hardware implementation of the IEM FLIM algorithm suitable for single photon avalanche diode arrays in nanometer-scale CMOS technology is now proposed. The problems of reduced pixel readout bandwidth and background noise are studied and a calibration method suitable for FPGA implementation is introduced. In particular, the relationship between signal-to-noise ratio and background noise is considered based on statistics theory and compared with a rapid lifetime determination method and maximum-likelihood estimator with–without background correction. The results are also compared with Monte Carlo simulations giving good agreement. The performance of the proposed methods has been tested on monoexponential decay experimental data. The high flexibility, wide range, and hardware friendliness make IEM the best candidate for system-on-chip integration to our knowledge.

© 2009 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(030.5290) Coherence and statistical optics : Photon statistics
(040.6070) Detectors : Solid state detectors
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: December 10, 2008
Revised Manuscript: January 28, 2009
Manuscript Accepted: February 2, 2009
Published: March 17, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Day-Uei Li, Richard Walker, Justin Richardson, Bruce Rae, Alex Buts, David Renshaw, and Robert Henderson, "Hardware implementation and calibration of background noise for an integration-based fluorescence lifetime sensing algorithm," J. Opt. Soc. Am. A 26, 804-814 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-26-4-804


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, 2005). [CrossRef]
  2. P. I. H. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9, 48-52 (1999). [CrossRef] [PubMed]
  3. A. D. Elder, S. M. Matthews, J. Swartling, K. Yunus, J. H. Frank, C. M. Brennan, A. C. Fisher, and C. F. Kaminski, “Application of frequency-domain fluorescence lifetime imaging microscopy as a quantitative analytical tool for microfluidic devices,” Opt. Express 14, 5456-5467 (2006). [CrossRef] [PubMed]
  4. D.-A. Mendels, E. M. Graham, S. W. Magennis, A. C. Jones, and F. Mendels, “Quantitative comparison of thermal and solutal transport in a T-mixer by FLIM and CFD,” Microfluid. Nanofluid. 5, 603-617 (2008).
  5. R. K. Neely, D. Daujotyte, S. Grazulis, S. W. Magennis, D. T. F. Dryden, S. Klimasauskas, and A. C. Jones, “Time-resolved fluorescence of 2-aminopurine as a probe of base flipping in M. Hhal-DNA complexes,” Nucleic Acids Res. 33, 6953-6960 (2005). [CrossRef] [PubMed]
  6. A. A. Istratov and O. F. Vyvenko, “Exponential analysis in physical phenomena” Rev. Sci. Instrum. 70, 1233-1257 (1999). [CrossRef]
  7. S. Pelet, M. J. R. Previte, L. H. Laiho, and P. T. C. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J. 87, 2807-2817 (2004). [CrossRef] [PubMed]
  8. J. A. Jo, Q. Fang, and L. Marcu, “Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the Laguerre expansion technique,” IEEE J. Sel. Top. Quantum Electron. 11, 835-845 (2005). [CrossRef]
  9. D.-U. Li, E. Bonnist, D. Renshaw, and R. Henderson, “On-chip time-correlated fluorescence lifetime extraction algorithms and error analysis,” J. Opt. Soc. Am. A 25, 1190-1198 (2008). [CrossRef]
  10. R. M. Ballew and J. N. Demas, “An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays,” Anal. Chem. 61, 30-33 (1989). [CrossRef]
  11. D.-U. Li, B. Rae, E. Bonnist, D. Renshaw, and R. Henderson, “On-chip fluorescence lifetime extraction using synchronous gating scheme-theoretical error analysis and practical implementation,” in Proceedings of the International Conference on Bioinspired Systems and Signal Processing (2008), pp. 171-176.
  12. B. Rae, C. Griffin, K. Muir, J. Girkin, E. Gu, D. Renshaw, E. Charbon, M. Dawson, and R. Henderson, “A microsystem for time-resolved fluorescence analysis using CMOS single-photon avalanche diodes and micro-LEDs,” in Proceedings of the IEEE International Conference on Solid State Circuits (IEEE, 2008), pp. 166-167.
  13. C. Moore, S. P. Chan, J. N. Demas, and B. A. Degraff, “Comparison of methods for rapid evaluation of lifetime of exponential decays,” Appl. Spectrosc. 58, 603-607 (2004). [CrossRef] [PubMed]
  14. A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, “High frame rate fluorescence lifetime imaging,” J. Phys. D 36, 1655-1662 (2003). [CrossRef]
  15. D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, and P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 1-13 (2004). [CrossRef]
  16. J. Requejo-Isidro, J. McGinty, I. Munro, D. S. Elson, N. P. Galletly, M. J. Lever, M. A. A. Neil, G. W. H. Stamp, P. M. W. French, P. A. Kellett, J. D. Hares, and A. K. L. Dymoke-Bradshaw, “High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging,” Opt. Lett. 29, 2249-2251 (2004). [CrossRef] [PubMed]
  17. W. Trabesinger, C. G. Hübner, B. Hecht, and U. P. Wild, “Continuous real-time measurement of fluorescence lifetimes,” Rev. Sci. Instrum. 73, 3122-3124 (2002). [CrossRef]
  18. D. Halmer, G. von Basum, P. Hering, and M. Mürtz, “Fast exponential fitting algorithm for real-time instrumental use,” Rev. Sci. Instrum. 75, 2187-2191 (2004). [CrossRef]
  19. H. P. Good, A. J. Kallir, and U. P. Wild, “Comparison of fluorescence lifetime fitting techniques,” J. Phys. Chem. 88, 5435-5441 (1984). [CrossRef]
  20. P. C. Schneider and R. M. Clegg, “Rapid acquisition, analysis, and display of fluorescence lifetime-resolved images for real-time applications,” Rev. Sci. Instrum. 68, 4107-4119 (1997). [CrossRef]
  21. J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H. van den Bergh, and G. Wagnières, “Instrumentation for real-time fluorescence lifetime imaging in endoscopy,” Rev. Sci. Instrum. 70, 4689-4701 (1999). [CrossRef]
  22. R. A. Colyer, C. Lee, and E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech. 71, 201-213 (2008). [CrossRef]
  23. C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Toward a 3-D camera based on single photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 10, 796-802 (2004). [CrossRef]
  24. L. Pancheri and D. Stoppa, “Low-noise CMOS single-photon avalanche diodes with 32 ns dead time,” in Proceedings of the 37th European Solid-State Device Research Conference (2007), pp. 362-365. [CrossRef]
  25. C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13, 863-869 (2007). [CrossRef]
  26. M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, and S. Cova, “Progress in silicon single-photon avalanche diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 852-862 (2007). [CrossRef]
  27. M. Gersbach, C. Niclass, J. Richardson, R. Henderson, L. Grant, and E. Charbon, “A single photon detector implemented in a 130 nm CMOS imaging process,” in Proceedings of the 38th European Solid-State Device Research Conference (2008), pp. 270-273. [CrossRef]
  28. M. A. Marwick and A. G. Anreou, “Single photon avalanche photodetector with integrated quenching fabricated in TSMC 0.18 μm1.8 V CMOS process,” Electron. Lett. 44, 643-644 (2008). [CrossRef]
  29. M. Köllner and J. Wolfrum, “How many photons are necessary for fluorescence-lifetime measurements?” Chem. Phys. Lett. 200, 199-204 (1992). [CrossRef]
  30. P. Hall and B. Selinger, “Better estimates of exponential decay parameters,” J. Phys. Chem. 85, 2941-2946 (1981). [CrossRef]
  31. J. Philips and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J. Opt. Soc. Am. A 20, 368-379 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited