OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Relationship between threshold and suprathreshold perception of position and stereoscopic depth

Saumil S. Patel, Harold E. Bedell, Dorcas K. Tsang, and Michael T. Ukwade  »View Author Affiliations


JOSA A, Vol. 26, Issue 4, pp. 847-861 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000847


View Full Text Article

Enhanced HTML    Acrobat PDF (596 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We seek to determine the relationship between threshold and suprathreshold perception for position offset and stereoscopic depth perception under conditions that elevate their respective thresholds. Two threshold-elevating conditions were used: (1) increasing the interline gap and (2) dioptric blur. Although increasing the interline gap increases position (Vernier) offset and stereoscopic disparity thresholds substantially, the perception of suprathreshold position offset and stereoscopic depth remains unchanged. Perception of suprathreshold position offset also remains unchanged when the Vernier threshold is elevated by dioptric blur. We show that such normalization of suprathreshold position offset can be attributed to the topographical-map-based encoding of position. On the other hand, dioptric blur increases the stereoscopic disparity thresholds and reduces the perceived suprathreshold stereoscopic depth, which can be accounted for by a disparity-computation model in which the activities of absolute disparity encoders are multiplied by a Gaussian weighting function that is centered on the horopter. Overall, the statement “equal suprathreshold perception occurs in threshold-elevated and unelevated conditions when the stimuli are equally above their corresponding thresholds” describes the results better than the statement “suprathreshold stimuli are perceived as equal when they are equal multiples of their respective threshold values.”

© 2009 Optical Society of America

OCIS Codes
(330.1400) Vision, color, and visual optics : Vision - binocular and stereopsis
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6130) Vision, color, and visual optics : Spatial resolution
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: September 30, 2008
Revised Manuscript: January 17, 2009
Manuscript Accepted: January 22, 2009
Published: March 18, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Saumil S. Patel, Harold E. Bedell, Dorcas K. Tsang, and Michael T. Ukwade, "Relationship between threshold and suprathreshold perception of position and stereoscopic depth," J. Opt. Soc. Am. A 26, 847-861 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-26-4-847


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. Fechner, in Elemente der Psychophysik (Breitkopf and Hartel, 1860).
  2. D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Krieger, 1974).
  3. M. A. Georgeson and G. D. Sullivan, “Contrast constancy: deblurring in human vision by spatial frequency channels,” J. Physiol. (London) 252, 627-656 (1975).
  4. W. H. Swanson, H. R. Wilson, and S. C. Giese, “Contrast matching data predicted from contrast increment thresholds,” Vision Res. 24, 63-75 (1984). [CrossRef] [PubMed]
  5. M. A. Georgeson, “Temporal properties of spatial contrast vision,” Vision Res. 27, 765-780 (1987). [CrossRef] [PubMed]
  6. C. M. Schor and I. Wood, “Disparity range for local stereopsis as a function of luminance spatial frequency,” Vision Res. 23, 1649-1654 (1983). [CrossRef] [PubMed]
  7. M. A. Georgeson, “Contrast overconstancy,” J. Opt. Soc. Am. A 8, 579-586 (1991). [CrossRef] [PubMed]
  8. J. J. Kulikowski, “Effective contrast constancy and linearity of contrast sensation,” Vision Res. 16, 1419-1431 (1976). [CrossRef] [PubMed]
  9. R. N. Berry, “Quantitative relations among vernier, real depth, and stereoscopic depth acuities,” J. Exp. Psychol. 38, 708-721 (1948). [CrossRef] [PubMed]
  10. G. Westheimer and S. P. McKee, “Spatial configurations for visual hyperacuity,” Vision Res. 17, 941-947 (1977). [CrossRef] [PubMed]
  11. L. M. Wilcox, J. H. Elder, and R. F. Hess, “The effects of blur and size on monocular and stereoscopic localization,” Vision Res. 40, 3575-3584 (2000). [CrossRef] [PubMed]
  12. G. Westheimer and S. McKee, “Stereoscopic acuity with defocused and spatially filtered retinal images,” J. Opt. Soc. Am. 70, 772-787 (1980). [CrossRef]
  13. S. T. Chung and H. E. Bedell, “Vernier and letter acuities for low-pass filtered moving stimuli,” Vision Res. 38, 1967-1982 (1998). [CrossRef] [PubMed]
  14. C. M. Schor, M. Edwards, and D. R. Pope, “Spatial-frequency and contrast tuning of the transient-stereopsis system,” Vision Res. 38, 3057-3068 (1998). [CrossRef]
  15. R. S. Harwerth, P. M. Fredenburg, and E. L. Smith 3rd, “Temporal integration for stereoscopic vision,” Vision Res. 43, 505-517 (2003). [CrossRef] [PubMed]
  16. H. Ono and J. Comerford, “Stereoscopic depth constancy,” in Stability and Constancy in Visual Perception, W.Epstein, ed. (Wiley, 1977), pp. 91-128.
  17. M. F. Bradshaw, A. Glennerster, and B. J. Rogers, “The effect of display size on disparity scaling from differential perspective and vergence cues,” Vision Res. 36, 1255-1264 (1996). [CrossRef] [PubMed]
  18. E. Brenner and W. J. van Damme, “Perceived distance, shape and size,” Vision Res. 39, 975-986 (1999). [CrossRef] [PubMed]
  19. A. H. Holoway and E. G. Boring, “Determinants of apparent visual size with distance variant,” Am. J. Psychol. 54, 21-37 (1941). [CrossRef]
  20. W. van Damme and E. Brenner, “The distance used for scaling disparities is the same as the one used for scaling retinal size,” Vision Res. 37, 757-764 (1997). [CrossRef] [PubMed]
  21. M. H. Pirenne, “Spectral luminous efficiency of radiation,” in The Eye, H.Davson, ed. (Academic, 1962), pp. 65-91.
  22. G. Wald, “The receptors of human color vision,” Science 145, 1007-1016 (1964). [CrossRef] [PubMed]
  23. D. H. Hubel and T. N. Wiesel, “Uniformity of monkey striate cortex: a parallel relationship between field size, scatter, and magnification factor,” J. Comp. Neurol. 158, 295-305 (1974). [CrossRef] [PubMed]
  24. D. H. Hubel and T. N. Wiesel, “Ferrier lecture. Functional architecture of macaque monkey visual cortex,” Proc. R. Soc. London 198, 1-59 (1977). [CrossRef]
  25. E. E. Andersen and F. W. Weymouth, “Visual perception and the retinal mosaic,” Am. J. Physiol. 64, 559-594 (1923).
  26. W. H. Bosking, J. C. Crowley, and D. Fitzpatrick, “Spatial coding of position and orientation in primary visual cortex,” Nat. Neurosci. 5, 874-882 (2002). [CrossRef] [PubMed]
  27. D. M. Levi and S. A. Klein, “Weber's law for position: the role of spatial frequency and contrast,” Vision Res. 32, 2235-2250 (1992). [CrossRef] [PubMed]
  28. S. J. Waugh and D. M. Levi, “Spatial alignment across gaps: contributions of orientation and spatial scale,” J. Opt. Soc. Am. A 12, 2305-2317 (1995). [CrossRef]
  29. J. M. Findlay, “Feature detectors and vernier acuity,” Nature (London) 241, 135-137 (1973). [CrossRef]
  30. S. J. Waugh, D. M. Levi, and T. Carney, “Orientation, masking, and vernier acuity for line targets,” Vision Res. 33, 1619-1638 (1993). [CrossRef] [PubMed]
  31. A. J. Mussap and D. M. Levi, “Spatial properties of filters underlying vernier acuity revealed by masking: evidence for collator mechanisms,” Vision Res. 36, 2459-2473 (1996). [CrossRef] [PubMed]
  32. S. S. Patel, H. E. Bedell, and M. T. Ukwade, “Vernier judgments in the absence of regular shape information,” Vision Res. 39, 2349-2360 (1999). [CrossRef] [PubMed]
  33. G. F. Poggio and B. Fischer, “Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey,” J. Neurophysiol. 40, 1392-1405 (1977). [PubMed]
  34. J. I. Nelson, H. Kato, and P. O. Bishop, “Discrimination of orientation and position disparities by binocularly activated neurons in cat striate cortex,” J. Neurophysiol. 40, 260-283 (1977). [PubMed]
  35. G. F. Poggio, B. C. Motter, S. Squatrito, and Y. Trotter, “Responses of neurons in visual cortex (V1 and V2) of the alert macaque to dynamic random-dot stereograms,” Vision Res. 25, 397-406 (1985). [CrossRef] [PubMed]
  36. J. P. Roy, H. Komatsu, and R. H. Wurtz, “Disparity sensitivity of neurons in monkey extrastriate area MST,” J. Neurosci. 12, 2478-2492 (1992). [PubMed]
  37. S. S. Patel, H. E. Bedell, and P. Sampat, “Pooling signals from vertically and non-vertically orientation-tuned disparity mechanisms in human stereopsis,” Vision Res. 46, 1-13 (2006). [CrossRef]
  38. S. S. Patel, B. C. Jiang, and H. Ogmen, “Vergence dynamics predict fixation disparity,” Neural Comput. 13, 1495-1525 (2001). [CrossRef] [PubMed]
  39. N. Qian and Y. Zhu, “Physiological computation of binocular disparity,” Vision Res. 37, 1811-1827 (1997). [CrossRef] [PubMed]
  40. D. J. Fleet, H. Wagner, and D. J. Heeger, “Neural encoding of binocular disparity: energy models, position shifts and phase shifts,” Vision Res. 36, 1839-1857 (1996). [CrossRef] [PubMed]
  41. S. S. Patel, M. T. Ukwade, S. B. Stevenson, H. E. Bedell, V. Sampath, and H. Ogmen, “Stereoscopic depth perception from oblique phase disparities,” Vision Res. 43, 2479-2492 (2003). [CrossRef] [PubMed]
  42. L. Gantz, S. S. Patel, S. T. Chung, and R. S. Harwerth, “Mechanisms of perceptual learning of depth discrimination in random dot stereograms,” Vision Res. 47, 2170-2178 (2007). [CrossRef] [PubMed]
  43. S. P. McKee and G. J. Mitchison, “The role of retinal correspondence in stereoscopic matching,” Vision Res. 28, 1001-1012 (1988). [CrossRef] [PubMed]
  44. H. A. Mallot and H. Bideau, “Binocular vergence influences the assignment of stereo correspondences,” Vision Res. 30, 1521-1523 (1990). [CrossRef] [PubMed]
  45. S. B. Stevenson, L. K. Cormack, C. M. Schor, and C. W. Tyler, “Disparity tuning in mechanisms of human stereopsis,” Vision Res. 32, 1685-1694 (1992). [CrossRef] [PubMed]
  46. S. J. Prince and R. A. Eagle, “Weighted directional energy model of human stereo correspondence,” Vision Res. 40, 1143-1155 (2000). [CrossRef] [PubMed]
  47. H. S. Smallman and D. I. MacLeod, “Spatial scale interactions in stereo sensitivity and the neural representation of binocular disparity,” Perception 26, 977-994 (1997). [CrossRef] [PubMed]
  48. C. M. Schor and P. A. Howarth, “Suprathreshold stereo-depth matches as a function of contrast and spatial frequency,” Perception 15, 249-258 (1986). [CrossRef] [PubMed]
  49. C. M. Schor and D. R. Badcock, “A comparison of stereo and vernier acuity within spatial channels as a function of distance from fixation,” Vision Res. 25, 1113-1119 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited