OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Contrast improvement in Fourier-domain optical coherence tomography through time gating

Matthew S. Muller and James M. Fraser  »View Author Affiliations


JOSA A, Vol. 26, Issue 4, pp. 969-976 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000969


View Full Text Article

Enhanced HTML    Acrobat PDF (774 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Time-gated (TG) Fourier-domain optical coherence tomography (FDOCT) exploits interferometric imaging with incoherent gating to filter out unwanted backreflections and improve contrast. The system uses sum-frequency generation with a variable length optical pulse as a “time gate” to restrict the depth field of view of backscattered light to 84 176 μ m (−20 dB points). The imaging bandwidth is upconverted from the IR (1280 nm) to visible (504 nm), which allows the use of sensitive silicon-based detection technology, prior to standard FDOCT processing. The TG system achieves a maximum sensitivity of 88 dB, and a contrast enhancement of 29 dB is shown over a standard IR FDOCT system. Imaging of a highly scattering medium (onion skin) is also demonstrated.

© 2009 Optical Society of America

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Imaging Systems

History
Original Manuscript: October 13, 2008
Manuscript Accepted: February 3, 2009
Published: March 24, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Matthew S. Muller and James M. Fraser, "Contrast improvement in Fourier-domain optical coherence tomography through time gating," J. Opt. Soc. Am. A 26, 969-976 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-26-4-969


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28, 1745-1747 (2003). [CrossRef] [PubMed]
  2. H. Lim, M. Mujat, C. Kerbage, E. C. W. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Express 14, 12902-12908 (2006). [CrossRef] [PubMed]
  3. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975-2977 (2006). [CrossRef] [PubMed]
  4. M. S. Muller, P. J. L. Webster, and J. M. Fraser, “Time-gated Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3336-3338 (2007). [CrossRef] [PubMed]
  5. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726-735 (2006). [CrossRef] [PubMed]
  6. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D 38, 2519-2535 (2005). [CrossRef]
  7. X. Gu, S. Akturk, A. Shreenath, Q. Cao, and R. Trebino, “The measurement of ultrashort light pulses-simple devices, complex pulses,” Opt. Rev. 11, 141-152 (2004). [CrossRef]
  8. R. Trebino, “FROG,” in Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, R.Trebino, ed. (Kluwer Academic, 2000), pp. 101-115.
  9. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36, R207-R227 (2003). [CrossRef]
  10. J. G. Fujimoto, S. De Silvestri, E. P. Ippen, C. A. Puliafito, R. Margolis, and A. Oseroff, “Femtosecond optical ranging in biological systems,” Opt. Lett. 11, 150-152 (1986). [CrossRef] [PubMed]
  11. C. Doulé, T. Lépine, P. Georges, and A. Brun, “Video rate depth-resolved 2D imaging through turbid media by femtosecond parametric amplification,” Opt. Lett. 25, 353-355 (2000). [CrossRef]
  12. M. D. Duncan, R. Mahon, L. L. Tankersley, and J. Reintjes, “Time-gated imaging through scattering media using stimulated Raman amplification,” Opt. Lett. 16, 1868-1870 (1991). [CrossRef] [PubMed]
  13. T. Yasui, K. Minoshima, E. Abraham, and H. Matsumoto, “Microscopic time-resolved 2D imaging with a femtosecond amplifying optical Kerr gate,” Appl. Opt. 41, 5191-5194 (2002). [CrossRef] [PubMed]
  14. E. Baigar, C. Hauger, and W. Zinth, “Imaging within highly scattering media using time-resolved backscattering of femtosecond pulses,” Appl. Phys. B 67, 257-261 (1998). [CrossRef]
  15. R. Trebino and J. Buck, “Nonlinear optics,” in Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, R.Trebino, ed. (Kluwer Academic, 2000), pp. 37-60. [CrossRef]
  16. E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583-594 (2005). [CrossRef] [PubMed]
  17. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  18. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,”Opt. Express 11, 3598-3604 (2003). [CrossRef] [PubMed]
  19. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited