OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 6 — May. 26, 2009

Dynamic evolution of an edge dislocation through aligned and misaligned paraxial optical A B C D systems

Hongwei Yan and Baida Lü  »View Author Affiliations

JOSA A, Vol. 26, Issue 4, pp. 985-992 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (649 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The closed-form propagation expressions of an edge dislocation nested in a general elliptical Gaussian beam through aligned and misaligned paraxial optical A B C D systems are derived and used to study the dynamic evolution behavior of the edge dislocation propagating in free space and through a misaligned lens. It is shown that the noncanonical vortex and dynamic inversion of the topological charge, as well as a new edge dislocation may appear under certain conditions. The results are illustrated analytically and numerically.

© 2009 Optical Society of America

OCIS Codes
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(260.0260) Physical optics : Physical optics

ToC Category:
Physical Optics

Original Manuscript: December 22, 2008
Manuscript Accepted: February 5, 2009
Published: March 25, 2009

Virtual Issues
Vol. 4, Iss. 6 Virtual Journal for Biomedical Optics

Hongwei Yan and Baida Lü, "Dynamic evolution of an edge dislocation through aligned and misaligned paraxial optical ABCD systems," J. Opt. Soc. Am. A 26, 985-992 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” in Progress in Optics, Vol. XLII, E.Wolf, ed. (North-Holland, 2001), pp. 219-276. [CrossRef]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature (London) 424, 21-27 (2003).
  3. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73-87 (1993). [CrossRef]
  4. F. S. Roux, “Coupling of noncanonical optical vortices,” J. Opt. Soc. Am. B 21, 664-670 (2004). [CrossRef]
  5. Y. S. Kivshar, A. Nepomnyashchy, V. Tikhonenko, J. Christou, and B. Luther-Davies, “Vortex-stripe soliton interactions,” Opt. Lett. 25, 123-125 (2000). [CrossRef]
  6. D. V. Petrov, “Vortex-edge dislocation interaction in a linear medium,” Opt. Commun. 188, 307-312 (2001). [CrossRef]
  7. D. V. Petrov, “Splitting of an edge dislocation by an optical vortex,” Opt. Quantum Electron. 34, 759-773 (2002). [CrossRef]
  8. G. Molina-Terriza, J. Recolons, J. P. Torres, L. Torner, and E. M. Wright, “Observation of the dynamical inversion of topological charge of an optical vortex,” Phys. Rev. Lett. 87, 023902 (2001). [CrossRef]
  9. A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Vortex evolution and bound pair formation in anisotropic nonlinear optical media,” Phys. Rev. Lett. 77, 4544-4547 (1996). [CrossRef] [PubMed]
  10. A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Decay of high order optical vortices in anisotropic nonlinear optical media,” Phys. Rev. Lett. 78, 2108-2111 (1997). [CrossRef]
  11. V. Tikhonenko, J. Christou, B. Luther-Davies, and Y. S. Kivshar, “Observation of vortex solitons created by the instability of dark soliton stripes,” Opt. Lett. 21, 1129-1131 (1996). [CrossRef] [PubMed]
  12. Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Transformation of non-symmetric Gaussian beam into symmetric one by means of tensor ABCD law,” Optik (Stuttgart) 85, 67-72 (1990).
  13. Q. Lin and L. Wang, “Collins formula and tensor ABCD law in spatial-frequency domain,” Opt. Commun. 185, 263-269 (2000). [CrossRef]
  14. R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Partially coherent beams and a generalized ABCD-law,” Opt. Commun. 65, 322-328 (1988). [CrossRef]
  15. A. Erdelyi, W. Magnus, and F. Oberhettinger, Tables of Integral Transforms (McGraw-Hill, 1954).
  16. Y. Cai and D. Ge, “Propagation of various dark hollow beams through an apertured paraxial ABCD optical system,” Phys. Lett. A 357, 72-80 (2006). [CrossRef]
  17. H. Weber, “Collins integral for misaligned optical elements,” J. Mod. Opt. 53, 2793-2801 (2006). [CrossRef]
  18. S. Wang and L. Ronchi, “Principles and design of optical arrays,” in Progress in Optics, Vol. XXV, E.Wolf, ed. (Elsevier Science, 1988), p. 279.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited