OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 8 — Jul. 30, 2009

Study of turbid media with light: Recovery of mechanical and optical properties from boundary measurement of intensity autocorrelation of light

Hari. M. Varma, A. K. Nandakumaran, and R. M. Vasu  »View Author Affiliations

JOSA A, Vol. 26, Issue 6, pp. 1472-1483 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (828 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss the inverse problem associated with the propagation of the field autocorrelation of light through a highly scattering object like tissue. In the first part of the work, we reconstruct the optical absorption coefficient μ a and particle diffusion coefficient D B from simulated measurements which are integrals of a quantity computed from the measured intensity and intensity autocorrelation g 2 ( τ ) at the boundary. In the second part we recover the mean square displacement (MSD) distribution of particles in an inhomogeneous object from the sampled g 2 ( τ ) measured on the boundary. From the MSD, we compute the storage and loss moduli distributions in the object. We have devised computationally easy methods to construct the sensitivity matrices which are used in the iterative reconstruction algorithms for recovering these parameters from the measurements. The results of the reconstruction of μ a , D B , MSD and the viscoelastic parameters, which are presented, show reasonably good position and quantitative accuracy.

© 2009 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(350.5500) Other areas of optics : Propagation

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 5, 2008
Revised Manuscript: April 16, 2009
Manuscript Accepted: April 17, 2009
Published: May 28, 2009

Virtual Issues
Vol. 4, Iss. 8 Virtual Journal for Biomedical Optics

Hari. M. Varma, A. K. Nandakumaran, and R. M. Vasu, "Study of turbid media with light: Recovery of mechanical and optical properties from boundary measurement of intensity autocorrelation of light," J. Opt. Soc. Am. A 26, 1472-1483 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60, 1134-1137 (1988). [CrossRef] [PubMed]
  2. M. J. Stephen, “Temporal fluctuations in wave propagation in random media,” Phys. Rev. B 37, 1-5 (1988). [CrossRef]
  3. G. Maret and D. E. Wolf, “Multiple light scattering from disordered media. The effect of Brownian motion of scatterers,” Z. Phys. B: Condens. Matter 65, 409-413 (1987). [CrossRef]
  4. D. A. Weitz, D. J. Pine, P. N. Puxy, and R. J. A. Tough, “Non-diffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63, 1747-1750 (1989). [CrossRef] [PubMed]
  5. D. Bicuot and G. Maret, “Multiple light scattering in Taylor-Couette flow,” Physica A 210, 87-112 (1994). [CrossRef]
  6. W. Leutz and G. Maret, “Ultrasound modulation of multiply scattered light,” Physica B 204, 14-19 (1995). [CrossRef]
  7. G. Yao and L. V. Wang, “Theoretical and experimental studies in ultrasound modulated optical tomography-biological tissues,” Appl. Opt. 39, 659-664 (2000). [CrossRef]
  8. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  9. D. A. Boas, D. H. Brooks, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57-75 (2001). [CrossRef]
  10. M. Heckmeier, S. E. Skipetrov, G. Maret, and R. Maynard, “Imaging of dynamic heterogeneities in multiple-scattering media,” J. Opt. Soc. Am. A 14, 185-191 (1997). [CrossRef]
  11. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffuse temporal field correlation,” Phys. Rev. Lett. 75, 1855-1858 (1995). [CrossRef] [PubMed]
  12. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14, 192-215 (1997). [CrossRef]
  13. M. Heckmeier and G. Maret, “Visualization of flow in multiple scattering liquids,” EPL 34, 257-262 (1996). [CrossRef]
  14. T. G. Mason and D. A. Weitz, “Optical measurements of the linear viscoelastic moduli of complex fluids,” Phys. Rev. Lett. 74, 1250-1253 (1995). [CrossRef] [PubMed]
  15. C. Usha Devi, R. S. Bharat Chandran, R. M. Vasu, and A. K. Sood, “Measurement of visco-elastic properties of breast-tissue mimicking materials using diffusing wave spectroscopy,” J. Biomed. Opt. 12, 034035(1-5) (2007). [CrossRef]
  16. T. Gisler and D. A. Weitz, “Tracer microrheology in complex fluids,” Curr. Opin. Colloid Interface Sci. 3, 586-592 (1998). [CrossRef]
  17. C. Zhou, G. Yu, D. Furuya, J. H. Greenberg, A. G. Yodh, and T. Durduran, “Diffuse correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 3, 1125-1144 (2006). [CrossRef]
  18. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh, “In vivo cerbrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46, 2053-2065 (2001). [CrossRef] [PubMed]
  19. E. Gratton, V. Toronov, U. Wolf, M. Wolf, and A. Webb, “Measurememt of brain activity by near-infrared light,” J. Biomed. Opt. 10, 011008-011013 (2005). [CrossRef]
  20. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tehou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30, 2915-2917 (2005). [CrossRef] [PubMed]
  21. A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction sceheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18, 262-271 (1999). [CrossRef] [PubMed]
  22. T. G. Mason, “Estimating the visco-elastic moduli of complex fluids using the generalized Stokes-Einstein equation,” Rheol. Acta 39, 371-378 (2000). [CrossRef]
  23. S. Sakadzic and L. V. Wang, “Correlation transfer and diffusion of ultrasound-modulated multiply scattered light,” Phys. Rev. Lett. 96, 163902 (2006). [CrossRef] [PubMed]
  24. S. Sakadzic and L. V. Wang, “Correlation transfer equation for multiply scattered light modulated by an ultrasonic pulse,” J. Opt. Soc. Am. A 24, 2797-2806 (2007). [CrossRef]
  25. M. Bellour, M. Skouri, J.-P. Munch, and P. Hebraud,“Brownian motion of particles embedded in a solution of giant micelles,” Eur. Phys. J. E 8, 431-436 (2002).
  26. S. R. Arridge, “Topical review: optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  27. H. M. Varma, R. M. Vasu, and A. K. Nandakumaran, “Direct reconstruction of complex refractive index distribution from boundary measurement of intensity and normal derivative of intensity,” J. Opt. Soc. Am. A 24, 3089-3099 (2007). [CrossRef]
  28. B.Chance, ed., Photon Migration in Tissues (Plenum, 1989).
  29. G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Appl. Opt. 46, 8506-8514 (2007). [CrossRef] [PubMed]
  30. F. Jaillon, J. Li, G. Dietsche, T. Elbert, and T. Gisler, “Activity of the human visual cortex measured non-invasively by diffusing-wave spectroscopy,” Opt. Express 15, 6643-6650 (2007). [CrossRef] [PubMed]
  31. F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing wave spectroscopy of nonergodic media,” Phys. Rev. E 63, 061404 (2001). [CrossRef]
  32. It is assumed that the detector is fast enough to respond to the decay of g2(m,τ). This can pose difficulties in the case where either the source-detector separation and/or the optical properties and MSD are so large that g2(m,τ) decays very fast. For the simulations we did, corresponding to the average properties and size of human breast, boundary correlation decay is slow enough for measurement.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited