OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 9 — Sep. 4, 2009

Influences of prolonged viewing of tilted lines on perceived line orientation: the normalization and tilt after-effect

Henrikas Vaitkevicius, Vilius Viliunas, Remigijus Bliumas, Rytis Stanikunas, Algimantas Svegzda, Aldona Dzekeviciute, and Janus J. Kulikowski  »View Author Affiliations


JOSA A, Vol. 26, Issue 7, pp. 1553-1563 (2009)
http://dx.doi.org/10.1364/JOSAA.26.001553


View Full Text Article

Enhanced HTML    Acrobat PDF (395 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Gibson [ J. Exp. Psychol. 16, 1 (1993) ] observed that during prolonged viewing, a line perceptually rotates toward the nearest vertical or horizontal meridian (the normalization effect), and moreover, the perceived orientation of a subsequently presented line depends on the orientation of the adapting one (the tilt after-effect). The mechanisms of both phenomena remain poorly understood. According to our experimental results, the adapting line perceptually rotates to the nearest of three orientations: vertical, horizontal, and diagonal. We propose a simple neuronal model of orientation detectors whose responses are determined by the cardinal detectors. It is shown that both normalization and tilt after-effect may be explained by adaptation of these cardinal detectors.

© 2009 Optical Society of America

OCIS Codes
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: August 14, 2008
Revised Manuscript: April 2, 2009
Manuscript Accepted: April 2, 2009
Published: June 11, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Henrikas Vaitkevicius, Vilius Viliunas, Remigijus Bliumas, Rytis Stanikunas, Algimantas Svegzda, Aldona Dzekeviciute, and Janus J. Kulikowski, "Influences of prolonged viewing of tilted lines on perceived line orientation: the normalization and tilt after-effect," J. Opt. Soc. Am. A 26, 1553-1563 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-26-7-1553


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. J. Gibson, “Adaptation, after-effect and contrast in the perception of curved line,” J. Exp. Psychol. 16, 1-13 (1933). [CrossRef]
  2. J. J. Gibson, “Adaptation, after-effect and simultaneous contrast and real restriction of the after-effect,” J. Exp. Psychol. 20, 186-196 (1937). [CrossRef]
  3. J. J. Gibson and M. Radner, “Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies,” J. Exp. Psychol. 20, 453-467 (1937). [CrossRef]
  4. W. Köhler and H. Wallach, “Figural after-effects: an investigation of visual processes,” Proc. Am. Philos. Soc. 88, 269-375 (1944).
  5. F. W. Campbell and L. Maffei, “The tilt after-effect: a fresh look,” Vision Res. 11, 833-840 (1971). [CrossRef] [PubMed]
  6. D. E. Mitchell and D. W. Muir, “Does the tilt after-effect occur in the oblique meridian?” Vision Res. 16, 609-614 (1976). [CrossRef] [PubMed]
  7. J. A. Bednar and R. Miikkulainen, “Tilt aftereffects in a self-organizing model of the primary visual cortex,” Neural Comput. 12, 1721-1740 (2000). [CrossRef] [PubMed]
  8. C. W. G. Clifford, P. Wenderoth, and B. Spehar, “A functional angle on some after-effects in cortical vision,” Proc. R. Soc. London, Ser. B 267, 1705-1710 (2000). [CrossRef]
  9. O. Schwartz, A. Hsu, and P. Dayan, “Space and time in visual context,” Nat. Rev. Neurosci. 8, 522-532 (2007). [CrossRef] [PubMed]
  10. L. Ganz, “Mechanism of the figural after-effects,” Psychol. Rev. 73, 128-150 (1956). [CrossRef]
  11. C. Blakemore, R. H. S. Carpenter, and M. A. Georgeson, “Lateral inhibition between orientation detectors in the human visual system,” Nature 228, 37-39 (1970). [CrossRef] [PubMed]
  12. C. Blakemore, R. H. S. Carpenter, and M. A. Georgeson, “Lateral thinking about lateral inhibition,” Nature 234, 418-419 (1971). [CrossRef]
  13. R. Over, J. Broerse, and B. Crassini, “Orientation illusion and masking in central and peripheral vision,” J. Exp. Psychol. 96, 25-31 (1972). [CrossRef] [PubMed]
  14. D. J. Tolhurst, “Adaptation to square-wave gratings: inhibition between spatial frequency channels in the human visual system,” J. Physiol. (London) 226, 231-248 (1972).
  15. R. S. Dealy and D. J. Tolhurst, “Is spatial adaptation an after-effect of prolonged inhibition?” J. Physiol. (London) 241, 261-270 (1974).
  16. R. Sekuler and J. Littlejohn, “Tilt aftereffect following very brief exposures,” Vision Res. 14, 151-152 (1974). [CrossRef] [PubMed]
  17. T. Vidyasagar, “Pattern adaptation in cat visual cortex is a co-operative phenomenon,” Neuroscience 36, 175-179 (1990). [CrossRef] [PubMed]
  18. J. McLean and L. A. Palmer, “Plasticity of neuronal response properties in adult cat striate cortex,” Visual Neurosci. 15, 177-196 (1998). [CrossRef]
  19. V. Dragoi, J. Sharma, and M. Sur, “Adaptation-induced plasticity of orientation tuning in adult visual cortex,” Neuron 28, 287-298 (2000). [CrossRef] [PubMed]
  20. V. Dragoi, J. Sharma, and M. Sur, “Response plasticity in primary visual cortex and its role in vision and visuomotor behaviour: bottom-up and top-down influences,” Institute of Electronics and Telecommunication Engineers (India) Journal of Research 49, 1-9 (2003).
  21. V. Dragoi and J. M. Sur, “Plasticity of orientation processing in adult visual cortex,” http://web.mit.edu/msur/www/publications/VDragoi2003.pdf.
  22. M. J. McMahon and D. I. MacLeod, “The origin of the oblique effect examined with pattern adaptation and masking,” J. Vision 3, 230-239 (2003). [CrossRef]
  23. D. Z. Jin, V. Dragoi, M. Sur, and H. S. Seung, “Tilt aftereffect and adaptation-induced changes in orientation tuning in visual cortex,” J. Neurophysiol. 94, 4038-4050 (2005). [CrossRef] [PubMed]
  24. S. V. Fomin, E. N. Sokolov, and H. H. Vaitkevicius, Artificial Sense Organs (in Russian)( Nauka Press, Moscow, 1979).
  25. H. Vaitkevicius, M. Karalius, A. Meskauskas, J. Sinius, and E. Sokolov, “A model for the monocular line orientation analyzer,” Biol. Cybern. 48, 139-147 (1983). [CrossRef] [PubMed]
  26. H. B. Barlow and P. Foldiak, “Adaptation and decorrelation in the cortex,” in The Computing Neuron, R.Durbin, C.Miall, C.Mitchison, eds. (Addison-Wesley, 1989), pp. 54-72.
  27. H. Barlow, “Intraneuronal information processing, directional selectivity and memory for spatio-temporal sequences,” Network Comput. Neural Syst. 7, 7251-7259 (1996). [CrossRef]
  28. D. J. Field, “What is the goal of sensory coding?” Neural Comput. 6, 559-601 (1994). [CrossRef]
  29. R. Baddelay, “An efficient code in VI,” Nature 381, 560-561 (1996). [CrossRef]
  30. B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature 381, 607-609 (1996). [CrossRef] [PubMed]
  31. B. A. Olshausen and D. J. Field, “Natural image statistics and efficient coding,” Network Comput. Neural Syst. 7, 333-339 (1996). [CrossRef]
  32. B. A. Olshausen and D. J. Field, “Sparse coding with an over complete basis set: a strategy employed by V1?” Vision Res. 37, 3311-3325 (1997). [CrossRef]
  33. J. H. van Hateren and A. van der Schaaf, “Independent component filters of natural images compared with simple cells in primary visual cortex,” Proc. R. Soc. London, Ser. B 265, 359-366 (1998). [CrossRef]
  34. J. H. van Hateren and D. L. Ruderman, “Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex,” Proc. R. Soc. London, Ser. B 265, 2315-2320 (1998). [CrossRef]
  35. P. O. Hoyer and A. Hyvarinen, “Independent component analysis applied to feature extraction from colour and stereo images,” Network Comput. Neural Syst. 11, 191-210 (2000). [CrossRef]
  36. A. Hyvarinen and P. O. Hoyer, “A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images,” Vision Res. 41, 2413-2423 (2001). [CrossRef] [PubMed]
  37. W. R. Levick and L. Thibos, “Analysis of orientation bias in cat retina,” J. Physiol. (London) 329, 243-261 (1982).
  38. T. Vidyasagar and J. Urbas, “Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18,” Exp. Brain Res. 46, 157-169 (1992).
  39. T. D. Shou and A. G. Leventhal, “Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus,” J. Neurosci. 9, 4287-4302 (1989). [PubMed]
  40. T. Vidyasagar, “Geniculate orientation biases as Cartesian coordinates for cortical orientation detectors,” in Models of the Visual Cortex, D.Rose and V.G.Dobson eds. (Wiley, 1985), pp. 390-395.
  41. T. Vidyasagar, “A model of striate response properties based on geniculate anisotropies,” Biol. Cybern. 57, 11-23 (1987). [CrossRef] [PubMed]
  42. T. Vidyasagar, P. Xing, and M. Volgushev, “Multiple mechanisms underlying the orientation selectivity of visual cortical neurons,” Trends Neurosci. 19, 272-277 (1996). [CrossRef] [PubMed]
  43. O. Creutzfeldt and M. Ito, “Functional synaptic organization of primary visual cortex neurons in the cat,” Exp. Brain Res. 6, 324-352 (1968). [CrossRef] [PubMed]
  44. T. Vidyasagar and G. Henry, “Relationship between preferred orientation and ordinal position in neurons of cat striate cortex,” Visual Neurosci. 5, 565-569 (1990). [CrossRef]
  45. B. Chapman and T. Bonhoeffer, “Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17,” Proc. Natl. Acad. Sci. U.S.A. 95, 2609-2614 (1998). [CrossRef] [PubMed]
  46. D. M. Coppola, L. E. White, D. Fitzpatrick, and D. Purves, “Unequal representation of cardinal and oblique contours in ferret visual cortex,” Proc. Natl. Acad. Sci. U.S.A. 95, 2621-2623 (1998). [CrossRef] [PubMed]
  47. D. H. Foster and P. A. Ward, “Asymmetries in oriented-line detection indicate two orthogonal filters in early vision,” Proc. R. Soc. London, Ser. B 243, 75-81 (1991). [CrossRef]
  48. D. H. Foster and P. A. Ward, “Horizontal-vertical filters in early vision predict anomalous line-orientation identification frequencies,” Proc. R. Soc. London, Ser. B 243, 83-86 (1991). [CrossRef]
  49. D. Foster and S. Westland, “Orientation contrast vs. orientation in line-target detection,” Vision Res. 35, 733-738 (1995). [CrossRef] [PubMed]
  50. D. Foster and S. Westland, “Multiple groups of orientation-selective visual mechanisms underlying rapid orientated-line detection,” Proc. R. Soc. London, Ser. B 265, 1605-1613 (1998). [CrossRef]
  51. W. R. Levick, “Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit's retina,” J. Physiol. (London) 188, 285-307 (1967).
  52. M. Carandini, J. A. Movshon, and D. Ferster, “Pattern adaptation and cross-orientation interactions in the primary visual cortex,” Neuropharmacology 37, 501-511 (1998). [CrossRef] [PubMed]
  53. J. A. Movshon and P. Lennie, “Pattern selective adaptation in visual cortical neurones,” Nature 278, 850-852 (1979). [CrossRef] [PubMed]
  54. I. Ohzawa, G. Sclar, and R. D. Freeman, “Contrast gain control in the cat's visual system,” J. Neurobiol. 54, 651-667 (1985).
  55. F. W. Campbell, J. J. Kulikowski, and J. Levinson, “The effect of orientation on the visual resolution of gratings,” J. Physiol. (London) 187, 427-436 (1966).
  56. F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).
  57. C. W. Clifford, A. M. Wyatt, D. H. Arnold, S. T. Smith, and P. Wenderoth, “Orthogonal adaptation improves orientation discrimination,” Vision Res. 41, 151-159 (2001). [CrossRef] [PubMed]
  58. B. G. Cleland and A. W. Freeman, “Visual adaptation is highly localized in the cat's retina,” J. Physiol. (London) 40, 591-611 (1968).
  59. R. L. De Valois, E. W. Yund, and N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Res. 22, 531-544 (1982). [CrossRef] [PubMed]
  60. K. Sakai and Y. Hirai, “Neural grouping and geometric effect in the determination of apparent orientation,” J. Opt. Soc. Am. A 19, 1049-1062 (2002). [CrossRef]
  61. C. Blakemore and E. A. Tobin, “Lateral inhibition between orientation detectors in the cat's visual cortex,” Exp. Brain Res. 15, 439-440 (1972). [CrossRef] [PubMed]
  62. V. A. F. Lamme, “The neurophysiology visual cortex figure-ground segregation primary,” J. Neurosci. 132, 1605-1615 (1995).
  63. S. Suzuki, “Attention-dependent brief adaptation to contour orientation: a high-level aftereffect for convexity?” Vision Res. 41, 3883-3902 (2001). [CrossRef] [PubMed]
  64. H. E. Jones, W. Wang, and A. M. Sillito, “Spatial organization and magnitude of orientation contrast interactions in primate V1,” J. Neurophysiol. 88, 2796-2808 (2002). [CrossRef] [PubMed]
  65. H. Ozeki, O. Sadakane, T. Akasaki, T. Naito, S. Shimegi, and H. Sato, “Relationship between excitation and inhibition underlying size tuning and contextual response modulation in the cat primary visual cortex,” J. Neurosci. 24, 1428-1438 (2004). [CrossRef] [PubMed]
  66. K. Sakai and H. Nishimura, “Surrounding suppression and facilitation in the determination of border ownership,” J. Cogn Neurosci. 18, 562-579 (2006). [CrossRef] [PubMed]
  67. T. Sugihara, Y. Tsuji, and K. Sakai, “Surround modulation in visual cortex can predict border-ownership selectivity: psychophysical study of border-ownership-dependent tilt aftereffect,” J. Opt. Soc. Am. A 25, 1426-1434 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited