OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 10 — Oct. 2, 2009

Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation

Philipp Urban, Mitchell R. Rosen, and Roy S. Berns  »View Author Affiliations


JOSA A, Vol. 26, Issue 8, pp. 1865-1875 (2009)
http://dx.doi.org/10.1364/JOSAA.26.001865


View Full Text Article

Enhanced HTML    Acrobat PDF (721 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author’s website.

© 2009 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(330.1690) Vision, color, and visual optics : Color
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Image Processing

History
Original Manuscript: March 3, 2009
Revised Manuscript: June 22, 2009
Manuscript Accepted: June 26, 2009
Published: July 29, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Philipp Urban, Mitchell R. Rosen, and Roy S. Berns, "Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation," J. Opt. Soc. Am. A 26, 1865-1875 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-26-8-1865


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. CIE Publication No. 142, “Improvement to Industrial Colour Difference Evaluation” (CIE Central Bureau, Vienna, 2001).
  2. F. H. Imai and R. S. Berns, “Spectral estimation using trichromatic digital cameras,” in International Symposium on Multispectral Imaging and Color Reproduction for Digital Archives (Chiba University, 1999), pp. 42-49.
  3. C. Li and M. R. Luo, “A novel approach for generating object spectral reflectance functions from digital cameras,” in Proceedings of the IS&T/SID 13th Color Imaging Conference (Society for Imaging Science and Technology/Society for Information Display, 2005), pp. 99-103.
  4. Y. Zhao and R. S. Berns, “Image-based spectral reflectance reconstruction using the matrix R method,” Color Res. Appl. 32, 343-351 (2007). [CrossRef]
  5. M. Mohammadi, M. Nezamabadi, R. Berns, and L. Taplin, “Spectral imaging target development based on hierarchical cluster analysis,” in Proceedings of the IS&T/SID 12th Color Imaging Conference (Society for Imaging Science and Technology/Society for Information Display, 2004), pp. 59-64.
  6. J. Y. Hardeberg, “On the spectral dimensionality of object colours,” in CGIV, First European Conference on Color in Graphics, Imaging and Vision (Society for Imaging Science and Technology, 2002), pp. 480-485.
  7. L. T. Maloney and B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29-33 (1986). [CrossRef] [PubMed]
  8. C. Li and M. R. Luo, “The estimation of spectral reflectances using the smoothness constraint condition,” in Proceedings of the IS&T/SID 9th Color Imaging Conference (Society for Imaging Science and Technology/Society for Information Display, 2001), pp. 62-67.
  9. V. Cheung, S. Westland, C. Li, J. Hardeberg, and D. Connah, “Characterization of trichromatic color cameras by using a new multispectral imaging technique,” J. Opt. Soc. Am. A 22, 1231-1240 (2005). [CrossRef]
  10. P. Morovic and G. D. Finlayson, “Metamer-set-based approach to estimating surface reflectance from camera RGB,” J. Opt. Soc. Am. A 23, 1814-1822 (2006). [CrossRef]
  11. M. Shi and G. Healey, “Using reflectance models for color scanner calibration,” J. Opt. Soc. Am. A 19, 645-656 (2002). [CrossRef]
  12. X. Zhang and H. Xu, “Reconstructing spectral reflectance by dividing spectral space and extending the principal components in principal component analysis,” J. Opt. Soc. Am. A 25, 371-378 (2008). [CrossRef]
  13. H. L. Shen, J. H. Xin, and S. J. Shao, “Improved reflectance reconstruction for multispectral imaging by combining different techniques,” Opt. Express 15, 5531-5536 (2007). [CrossRef] [PubMed]
  14. J. M. DiCarlo and B. A. Wandell, “Spectral estimation theory: beyond linear but before Bayesian,” J. Opt. Soc. Am. A 20, 1261-1270 (2003). [CrossRef]
  15. Y. Murakami, K. Ietomi, M. Yamaguchi, and N. Ohyama, “Maximum a posteriori estimation of spectral reflectance from color image and multipoint spectral measurements,” Appl. Opt. 46, 7068-7082 (2007). [CrossRef] [PubMed]
  16. G. Sharma, “Targetless scanner color calibration,” J. Imaging Sci. Technol. 44, 301-307 (2000).
  17. G. Sharma, “Set theoretic estimation for problems in subtractive color,” Color Res. Appl. 25, 333-348 (2000). [CrossRef]
  18. Y. Murakami, K. Fukura, M. Yamaguchi, and N. Ohyama, “Color reproduction from low-SNR multispectral images using spatio-spectral Wiener estimation,” Opt. Express 16, 4106-4120 (2008). [CrossRef] [PubMed]
  19. P. Urban, M. R. Rosen, and R. S. Berns, “A spatially adaptive wiener filter for reflectance estimation,” in Proceedings of the IS&T/SID 16th Color Imaging Conference (Society for Imaging Science and Technology/Society for Information Display, 2008), pp. 279-284.
  20. D. Attewell and R. J. Baddeley, “The distribution of reflectances within the visual environment,” Vision Res. 47, 548-554 (2007). [CrossRef] [PubMed]
  21. H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura, and Y. Miyake, “System design for accurately estimating the spectral reflectance of art paintings,” Appl. Opt. 39, 6621-6632 (2000). [CrossRef]
  22. N. Shimano, “Recovery of spectral reflectances of objects being imaged without prior knowledge,” IEEE Trans. Image Process. 15, 1848-1856 (2006). [CrossRef] [PubMed]
  23. S. H. J. Brauers and T. Aach, “Multispectral imaging with flash light sources,” in CGIV, 4th European Conference on Color in Graphics, Imaging and Vision (Society for Imaging Science and Technology, 2008), pp. 608-612.
  24. A. Mohammad-Djafari, “Bayesian inference for inverse problems in signal and image processing and applications,” Int. J. Imaging Syst. Technol. 16, 209-214 (2006). [CrossRef]
  25. C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color Images,” in Proceedings of IEEE International Conference on Computer Vision (IEEE, 1998), pp. 839-846.
  26. Y. Zhao, “Image segmentation and pigment mapping of cultural heritage based on spectral imaging,” Ph.D. thesis (Rochester Institute of Technology, Rochester, New York, 2008).
  27. J. Viggiano, “Minimal-knowledge assumptions in digital still camera characterization I.: Uniform distribution, Toeplitz correlation,” in Proceedings of the IS&T/SID 9th Color Imaging Conference (Society for Imaging Science and Technology/Society for Information Display, 2001), pp. 332-336.
  28. University of Joensuu Color Group, “Spectral database,” http://spectral.joensuu.fi (June 2009).
  29. M. D. Fairchild and G. M. Johnson, “METACOW: A public-domain, high-resolution, fully-digital, noise-free, metameric, extended-dynamic-range, spectral test target for imaging system analysis and simulation,” in Proceedings of the IS&T/SID 12th Color Imaging Conference (Society for Imaging Science and Technology/Society for Information Display, 2004), pp. 239-245.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited