OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 5, Iss. 14 — Nov. 16, 2010

Illumination artifacts in hyper-NA vector imaging

Jun Zhang, Yongsik Kim, Seung-Hune Yang, and Tom D. Milster  »View Author Affiliations


JOSA A, Vol. 27, Issue 10, pp. 2272-2284 (2010)
http://dx.doi.org/10.1364/JOSAA.27.002272


View Full Text Article

Enhanced HTML    Acrobat PDF (1861 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Off-axis polarized monopole illumination is applied to a hyper-numerical-aperture (NA) ( NA > 1 ) microscopic system. Illumination artifacts due to vector effects are observed, which are asymmetric and depend on illumination conditions. A model based on rigorous coupled wave theory is used to simulate image profiles for dielectric, semiconductor, and metal gratings with different monopole locations and polarization states. A solid immersion lens microscope is used to image different types of samples including MoSi photomask, patterned silicon wafer, and chrome photomask. The experimental images are in good agreement with simulation results.

© 2010 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.4980) Imaging systems : Partial coherence in imaging
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Imaging Systems

History
Original Manuscript: July 20, 2010
Manuscript Accepted: August 6, 2010
Published: September 27, 2010

Virtual Issues
Vol. 5, Iss. 14 Virtual Journal for Biomedical Optics

Citation
Jun Zhang, Yongsik Kim, Seung-Hune Yang, and Tom D. Milster, "Illumination artifacts in hyper-NA vector imaging," J. Opt. Soc. Am. A 27, 2272-2284 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-27-10-2272


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Zhang, M. Lang, T. D. Milster, and T. Chen, “Fabrication and testing of a GaP SIL with NA=2.64,” Proc. SPIE 6620, 66201Z (2007). [CrossRef]
  2. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990). [CrossRef]
  3. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994). [CrossRef]
  4. M. Lang, E. Aspnes, and T. D. Milster, “Geometrical analysis of third-order aberrations for a solid immersion lens,” Opt. Express 16, 20008–20028 (2008). [CrossRef] [PubMed]
  5. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999). [CrossRef]
  6. T. Chen, T. D. Milster, S. H. Yang, and D. Hansen, “Evanescent imaging with induced polarization by using a solid immersion lens,” Opt. Lett. 32, 124–126 (2007). [CrossRef]
  7. S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High-resolution subsurface microscopy technique,” Appl. Phys. Lett. 78, 4071–4073 (2001). [CrossRef]
  8. S. H. Yang, J. Zhang, Y. S. Kim, T. D. Milster, and J. R. Park, “Microscope system for blu-ray disk samples” (submitted to Appl. Opt.).
  9. E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London, Ser. A 253, 349–357 (1957).
  10. M. Mansuripur, “Distribution of light at and near the focus of high-numerical-aperture objectives,” J. Opt. Soc. Am. A 3, 2086–2094 (1986). [CrossRef]
  11. D. G. Flagello, T. D. Milster, and A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A Opt. 13, 53–64 (1996). [CrossRef]
  12. J. S. Jo, T. D. Milster, and J. K. Erwin, “Phase and amplitude apodization induced by focusing through an evanescent gap in a solid immersion lens microscope,” Opt. Eng. (Bellingham) 41, 1866–1875 (2002). [CrossRef]
  13. M. Totzeck, “Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields,” Optik (Stuttgart) 112, 399–406 (2001). [CrossRef]
  14. K. Saito, T. Ishimoto, T. Kondo, A. Nakaoki, S. Masuhara, M. Furuki, and M. Yamamoto, “Readout method for read only memory signal and air gap control signal in a near field optical disc system,” Jpn. J. Appl. Phys., Part 1 41, 1898–1902 (2002). [CrossRef]
  15. P. R. T. Munro and P. Török, “Calculation of the image of an arbitrary vectorial electromagnetic field,” Opt. Express 15, 9293–9307 (2007). [CrossRef] [PubMed]
  16. P. Török, P. R. T. Munro, and Em. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16, 507–523 (2008). [CrossRef] [PubMed]
  17. S. H. Yang, T. D. Milster, J. R. Park, and J. Zhang, “High-numerical-aperture image simulation using Babinet’s principle,” J. Opt. Soc. Am. A 27, 1012–1023 (2010). [CrossRef]
  18. H. H. Hopkins, “On the diffraction theory of optical imagines,” Proc. R. Soc. London, Ser. A 217, 408–432 (1953). [CrossRef]
  19. S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt. 57, 783–797 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited