OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 6 — Apr. 8, 2010

Improvement in dynamic range limitation of swept source optical coherence tomography by true logarithmic amplification

Bin Liu, Ehsan Azimi, and Mark E. Brezinski  »View Author Affiliations


JOSA A, Vol. 27, Issue 3, pp. 404-414 (2010)
http://dx.doi.org/10.1364/JOSAA.27.000404


View Full Text Article

Enhanced HTML    Acrobat PDF (944 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We previously demonstrated, with both theoretical and experimental studies, the dynamic range limitation with spectral domain optical coherence tomography (OCT) relative to time domain OCT. A significant portion of this limitation was due to the difference of analog/digital conversion. In this paper, a new method of true logarithmic amplification is discussed theoretically and tested experimentally to increase the dynamic range of a swept source OCT. With the current experimental setup, an increase of the dynamic range by about 6 dB was obtained.

© 2010 Optical Society of America

OCIS Codes
(110.2970) Imaging systems : Image detection systems
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 11, 2009
Revised Manuscript: December 18, 2009
Manuscript Accepted: December 29, 2009
Published: February 11, 2010

Virtual Issues
Vol. 5, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Bin Liu, Ehsan Azimi, and Mark E. Brezinski, "Improvement in dynamic range limitation of swept source optical coherence tomography by true logarithmic amplification," J. Opt. Soc. Am. A 27, 404-414 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-27-3-404


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. E. Brezinski, Optical Coherence Tomography: Principle and Practice (Academic, 2006).
  2. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy—Properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996). [PubMed]
  3. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  4. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185-1192 (1999). [CrossRef]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  6. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995). [CrossRef]
  7. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997). [CrossRef] [PubMed]
  8. H. Gerd and L. Michael Walter, “Coherence radar and spectral radar—New tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  9. E. Gotzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583-594 (2005). [CrossRef] [PubMed]
  10. W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser,” Opt. Lett. 30, 3159-3161 (2005). [CrossRef] [PubMed]
  11. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000lines/s,” Opt. Lett. 31, 2975-2977 (2006). [CrossRef] [PubMed]
  12. T. Mitsui, “Dynamic range of optical reflectometry with spectral interferometry,” Jpn. J. Appl. Phys., Part 1 38, 6133-6137 (1999). [CrossRef]
  13. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  14. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  15. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  16. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  17. B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12, 044007 (2007). [CrossRef] [PubMed]
  18. K. Zheng, B. Liu, C. Y. Huang, and M. E. Brezinski, “Experimental confirmation of potential swept source optical coherence tomography performance limitations,” Appl. Opt. 47, 6151-6158 (2008). [CrossRef] [PubMed]
  19. E. Azimi, B. Liu, and M. E. Brezinski, “Real-time and high performance calibration method for high-speed SS-OCT,” J. Biomed. Opt. (accepted).
  20. M. Born and E. Wolf, Principles of Optics (Cambridge Univ. Press, 2002).
  21. M. E. Brezinski and B. Liu, “Nonlocal quantum macroscopic superposition in a high-thermal low-purity state,” Phys. Rev. A 78, 063824 (2008). [CrossRef]
  22. C. T. Chen, Signals and Systems (Oxford Univ. Press, 2004).
  23. E. O. Brigham, The Fast Fourier Transform and its Applications (Prentice Hall, 1988).
  24. S. A. Boppart, “Surgical diagnostics, guidance, and intervention using optical coherence tomography,” Ph.D. thesis (Massachusetts Institute of Technology, Cambridge, 1998).
  25. G. J. Tearney, “Optical biopsy of in vivo tissue using optical coherence tomography,” Ph.D. thesis (Massachusetts Institute of Technology, 1996).
  26. G. Acciari, F. Giannini, and E. Limiti, “Theory and performance of parabolic true logarithmic amplifier,” IEE Proc.: Circuits Devices Syst. 144, 223-228 (1997). [CrossRef]
  27. B. Loesch, “UHF True Logarithmic IF Amplifier,” IEEE Trans. Aerosp. Electron. Syst. AES9, 660-664 (1973). [CrossRef]
  28. A. Woroncow and J. Croney, “A true IF logarithmic amplifier using twin-gain stages,” Radio Electron. Eng. 32, 149-155 (1966). [CrossRef]
  29. C. H. Chen, “Signal-to-noise ratios in logarithmic amplifiers,” Proc. IEEE 57, 1167-1168 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited