OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 8 — Jun. 8, 2010

Bar-like S-cone stimuli reveal the importance of an intermediate temporal filter

Rigmor C. Baraas, Janus J. Kulikowski, and Mark R. Muldoon  »View Author Affiliations

JOSA A, Vol. 27, Issue 4, pp. 766-780 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (668 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The relative involvement of different temporal frequency-selective filters underlying detection of chromatic stimuli was studied. Diverse spectral stimuli were used, namely flashed blue and yellow light spots, wide bars, and narrow bars. The stimuli were temporally modulated in luminance having constant wavelength. Although the bar-like stimuli apparently reduced the sensitivity at short and long wavelengths, the cone-opponent mechanism still remained responsible for the actual stimulus detection at different temporal frequencies. The bar-like stimuli increased sensitivity for temporal frequencies around 3 6 Hz , revealing involvement of an intermediate temporal frequency-selective filter in detection, the so-called transient-1 filter. A probability summation model for the method of adjustment was developed that assumes that detection depends on the properties of the temporal filters underlying the temporal frequency-sensitivity curve. The model supports the notion that at least two temporal frequency-selective filters are necessary to account for the shape of the sensitivity curves obtained for blue bar-like stimuli.

© 2010 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6180) Vision, color, and visual optics : Spectral discrimination
(330.6790) Vision, color, and visual optics : Temporal discrimination

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: September 10, 2009
Revised Manuscript: January 21, 2010
Manuscript Accepted: January 23, 2010
Published: March 22, 2010

Virtual Issues
Vol. 5, Iss. 8 Virtual Journal for Biomedical Optics

Rigmor C. Baraas, Janus J. Kulikowski, and Mark R. Muldoon, "Bar-like S-cone stimuli reveal the importance of an intermediate temporal filter," J. Opt. Soc. Am. A 27, 766-780 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. E. King-Smith and J. J. Kulikowski, “Pattern and flicker detection analysed by subthreshold summation,” J. Physiol. (London) 249, 519-548 (1975).
  2. M. B. Mandler and W. Makous, “A three channel model of temporal frequency perception,” Vision Res. 24, 1881-1887 (1984). [CrossRef] [PubMed]
  3. S. J. Anderson and D. C. Burr, “Spatial and temporal selectivity of the human motion detection system,” Vision Res. 25, 1147-1154 (1985). [CrossRef] [PubMed]
  4. R. F. Hess and G. T. Plant, “Temporal frequency discrimination in human vision: Evidence for an additional mechanism in the low spatial and high temporal frequency region,” Vision Res. 25, 1493-1500 (1985). [CrossRef] [PubMed]
  5. R. F. Hess and R. J. Snowden, “Temporal properties of human visual filters: number, shapes and spatial covariation,” Vision Res. 32, 47-59 (1992). [CrossRef] [PubMed]
  6. J. J. Kulikowski and D. J. Tolhurst, “Psychophysical evidence for sustained and transient detectors in human vision,” J. Physiol. (London) 232, 149-162 (1973).
  7. J. J. Kulikowski, “Some stimulus parameters affecting spatial and temporal resolution of human vision,” Vision Res. 11, 83-93 (1971). [CrossRef] [PubMed]
  8. D. H. Kelly, “Luminous and chromatic flickering patterns have opposite effects,” Science 188, 371-372 (1975). [CrossRef] [PubMed]
  9. A. B. Metha and K. T. Mullen, “Temporal mechanisms underlying flicker detection and identification for red-green and achromatic stimuli,” J. Opt. Soc. Am. A 13, 1969-1980 (1996). [CrossRef]
  10. A. B. Metha and K. T. Mullen, “Red-green and achromatic temporal filters: a ratio model predicts contrast-dependent speed perception,” J. Opt. Soc. Am. A 14, 984-996 (1997). [CrossRef]
  11. C. F. Stromeyer III, R. E. Kronauer, A. Ryu, A. Chaparro, and R. T. Eskew, Jr., “Contributions of human long-wave and middle-wave cones to motion detection,” J. Physiol. (London) 485, 221-243 (1995).
  12. C. F. Stromeyer, III, A. Chaparro, A. S. Tolias, and R. E. Kronauer, “Colour adaptation modifies the long-wave versus middle-wave cone weights and temporal phases in human luminance (but not red-green) mechanism,” J. Physiol. (London) 449, 227-254 (1997).
  13. Sharanjeet-Kaur, J. J. Kulikowski, and V. Walsh, “The detection and discrimination of categorical yellow,” Ophthalmic Physiol. Opt. 17, 32-37 (1997). [CrossRef] [PubMed]
  14. M. Marré, “The investigation of acquired colour vision deficiencies,” in Colour (Adam Hilger, 1973), pp. 99-135.
  15. A. Nacer, I. J. Murray, and J. J. Kulikowski, “Balancing sensitivity of human chromatic opponent mechanisms by adaptation,” J. Physiol. (London) P21, 485P (1995).
  16. K. T. Mullen and J. J. Kulikowski, “Wavelength discrimination at detection threshold,” J. Opt. Soc. Am. A 7, 733-742 (1990). [CrossRef] [PubMed]
  17. G. Westheimer, “The Maxwellian view,” Vision Res. 6, 669-682 (1966). [CrossRef] [PubMed]
  18. F. W. Campbell and J. J. Kulikowski, “Orientational selectivity of the human visual system,” J. Physiol. (London) 187, 437-445 (1966).
  19. A. Nacer, “The interaction between chromatic and achromatic mechanisms of human colour vision: Limitations of sensitivity,” Ph.D. thesis (Department of Optometry and Vision Sciences, UMIST, Manchester, UK, 1990).
  20. P. E. King-Smith and D. Carden, “Luminance and opponent-colour contributions to visual detection and adaptation and to temporal and spatial integration,” J. Opt. Soc. Am. 66, 709-717 (1976). [CrossRef] [PubMed]
  21. A. B. Watson, “Probability summation over time,” Vision Res. 19, 515-522 (1979). [CrossRef] [PubMed]
  22. J. J. Koenderink, “Scale-Time,” Biol. Cybern. 58, 159-162 (1988). [CrossRef]
  23. M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,” Proc. IEEE 93, 216-231 (2005). URL http://www.fftw.org/. [CrossRef]
  24. J. Meza, R. Oliva, P. Hough, and P. Williams, “OPT++: An Object Oriented Toolkit for Nonlinear Optimization,” ACM Trans. Math. Softw. 33(2), Article No. 12 (2007). URL http://doi. acm.org/10.1145/1236463.1236467.
  25. H. G. Sperling and R. S. Harwerth, “Red-green cone interactions in the increment threshold spectral sensitivity of primates,” Science 172, 180-184 (1971). [CrossRef] [PubMed]
  26. D. H. Foster and R. S. Snelgar, “Test and field spectral sensitivities of colour mechanisms obtained on small white backgrounds: action of unitary opponent-colour processes?,” Vision Res. 23, 787-797 (1983). [CrossRef] [PubMed]
  27. Sharanjeet-Kaur, J. J. Kulikowski, and D. Carden, “Isolation of chromatic and achromatic mechanisms: A new approach,” Ophthalmic Physiol. Opt. 18, 49-56 (1998). [CrossRef] [PubMed]
  28. H. D. Lange Dzn, “Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light,” J. Opt. Soc. Am. 48, 777-784 (1958). [CrossRef]
  29. W. J. Ewens and G. R. Grant, Statistical Methods in Bioinformatics: An Introduction (Springer Verlag, 2001).
  30. P. E. King-Smith and J. J. Kulikowski, “Line, edge and grating detectors in human vision,” J. Physiol. (London) 230, 23P-25P (1973).
  31. J. Bacon and P. E. King-Smith, “The detection of line segments,” Perception 6, 125-131 (1977). [CrossRef] [PubMed]
  32. C. R. Ingling Jr. and B. A. Drum, “How neural adaptation changes chromaticity coordinates,” J. Opt. Soc. Am. 63(3), 369-373 (1973). [CrossRef] [PubMed]
  33. C. R. Ingling Jr., E. Martinez, and A. L. Lewis, “Tonic-phasic-channel dichotomy and Crozier's law,” J. Opt. Soc. Am. 73, 183-189 (1983). [CrossRef] [PubMed]
  34. J. J. Kulikowski and K. Kranda, “Detection of coarse patterns with minimum contribution from rods,” Vision Res. 17, 653-656 (1977). [CrossRef] [PubMed]
  35. J. E. Thornton and E. N. Pugh, Jr., “Red/green colour opponency at detection threshold,” Science 219, 191-193 (1983). [CrossRef] [PubMed]
  36. R. S. Snelgar, D. H. Foster, and M. O. Scase, “Isolation of opponent-colour mechanisms at increment threshold,” Vision Res. 27, 1017-1027 (1987). [CrossRef] [PubMed]
  37. D. J. Calkins, J. E. Thornton, and E. N. Pugh, Jr., “Monochromatism determined at a long-wavelength/middle-wavelength cone-antagonistic locus,” Vision Res. 32, 2349-2367 (1992). [CrossRef] [PubMed]
  38. R. C. Baraas, J. J. Kulikowski, and A. R. Robson, “Spatial edges reduce colour selectivity,” Perception 27S, 168-169 (1998).
  39. D. R. Williams, D. I. MacLeod, and M. M. Hayhoe, “Punctate sensitivity of the blue-sensitive mechanism,” Vision Res. 21, 1357-1375 (1981). [CrossRef] [PubMed]
  40. D. R. Williams, D. I. A. MacLeod, and M. M. Hayhoe, “Foveal tritanopia,” Vision Res. 21, 1341-1356 (1981). [CrossRef] [PubMed]
  41. A. Nacer, I. J. Murray, Sharanjeet-Kaur, and J. J. Kulikowski, “Selectivity limits of spectral sensitivity functions for chromatic and achromatic mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd, 1997), pp. 83-91.
  42. J. J. Wisowaty and R. M. Boynton, “Temporal modulation sensitivity of the blue mechanism: measurements made without chromatic adaptation,” Vision Res. 20, 895-909 (1980). [CrossRef] [PubMed]
  43. A. Stockman, D. I. A. MacLeod, and D. D. DePriest, “The temporal properties of the human short-wave photoreceptors and their associated pathways,” Vision Res. 31, 189-208 (1991). [CrossRef] [PubMed]
  44. D. C. Burr and J. Ross, “Contrast sensitivity at high velocities,” Vision Res. 22, 479-484 (1982). [CrossRef] [PubMed]
  45. D. J. McKeefry and J. J. Kulikowski, “Spatial and temporal sensitivities of colour discrimination mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd, 1997), pp. 163-172.
  46. D. M. McKeefry, I. J. Murray, and J. J. Kulikowski, “Red-green and blue-yellow mechanisms are matched in sensitivity for temporal and spatial modulation,” Vision Res. 41, 245-255 (2001). [CrossRef] [PubMed]
  47. A. G. Shapiro, L. A. Baldwin, and J. D. Mollon, “The S and L-M chromatic systems have matched temporal processing characteristics only at low-light levels,” Perception 31, S68b (2002).
  48. J. G. Robson, “Spatial and temporal contrast sensitivity of the human eye,” J. Opt. Soc. Am. 56, 1141-1150 (1966). [CrossRef]
  49. P. Cavanagh, D. I. A. MacLeod, and S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428-1438 (1987). [CrossRef] [PubMed]
  50. R. F. Hess, K. T. Mullen, and E. Zrenner, “Human photopic vision with only short wavelength cones: post-receptoral properties,” J. Physiol. (London) 417, 151-172 (1989).
  51. M. H. A. Russell, J. J. Kulikowski, and I. J. Murray, “Spatial frequency dependence of the human visual evoked potential,” in Evoked Potentials III (Butterworth, 1987), pp. 231-239.
  52. P. R. Martin, “Colour processing in the primate retina: recent progress,” J. Physiol. (London) 513, 631-638 (1998). [CrossRef]
  53. D. M. Dacey and B. B. Lee, “The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature (London) 367, 731-735 (1994). [CrossRef]
  54. P. R. Martin, A. J. R. White, A. K. Goodchild, H. D. Wilder, and A. E. Sefton, “Evidence that blue-on cells are part of the third geniculocortical pathway in primates,” Eur. J. Neurosci. 9, 1536-1541 (1997). [CrossRef] [PubMed]
  55. D. J. Calkins, “Representation of cone signals in the primate retina,” J. Opt. Soc. Am. A 17, 597-606 (2000). [CrossRef]
  56. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carying S-cone signals in Macaque,” J. Neurosci. 28, 4078-4087 (2008). [CrossRef] [PubMed]
  57. M. S. Livingstone and D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci. 4, 309-356 (1984). [PubMed]
  58. D. Y. Ts'o and C. D. Gilbert, “The organization of chromatic and spatial interactions in the primate striate cortex,” J. Neurosci. 8, 1712-1728 (1988). [PubMed]
  59. T. Yeh, B. B. Lee, and J. Kremers, “Temporal response of ganglion cells of the macaque retina to cone-specific modulation,” J. Opt. Soc. Am. A 12, 456-464 (1995). [CrossRef]
  60. J. Cass, C. W. G. Clifford, D. Alais, and B. Spehar, “Temporal structure of chromatic channels revealed through masking,” J. Vision 9, 1-15 (2009). [CrossRef]
  61. B. B. Lee, P. R. Martin, and A. Valberg, “Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque,” J. Neurosci. 9, 1433-1442 (1989). [PubMed]
  62. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223-2236 (1990). [CrossRef] [PubMed]
  63. P. Lennie, J. Pokorny, and V. C. Smith, “Luminance,” J. Opt. Soc. Am. A 10, 1283-1293 (1993). [CrossRef] [PubMed]
  64. W. H. Merigan and J. H. Maunsell, “Macaque vision after magnocellular lateral geniculate lesions,” Visual Neurosci. 5, 347-352 (1990). [CrossRef]
  65. P. Gouras and E. Zrenner, “Enchancement of luminance flicker by color-opponent mechanisms,” Science 205, 587-589 (1979). [CrossRef] [PubMed]
  66. E. Kaplan and R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,” J. Physiol. (London) 330, 125-143 (1982).
  67. T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. (London) 337, 183-200 (1983).
  68. T. R. Vidyasagar, J. J. Kulikowski, D. M. Lipnicki, and B. Dreher, “Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque,” Eur. J. Neurosci. 16, 945-956 (2002). [CrossRef] [PubMed]
  69. T. Yoshioka and B. M. Dow, “Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cortex,” Behav. Brain Res. 76, 71-88 (1996). [CrossRef] [PubMed]
  70. T. Yoshioka, B. M. Dow, and R. G. Vautin, “Neuronal mechanisms of color categorization in areas V1, V2 and V4 of macaque monkey visual cortex,” Behav. Brain Res. 76, 51-70 (1996). [CrossRef] [PubMed]
  71. J. J. Kulikowski and V. Walsh, “Colour vision: isolating mechanisms in overlapping streams,” Prog. Brain Res. 95, 417-426 (1993). [CrossRef] [PubMed]
  72. C. R. Michael, “Color-sensitive complex cells in monkey striate cortex,” J. Neurophysiol. 41, 1250-1266 (1978). [PubMed]
  73. C. R. Michael, “Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields,” J. Neurophysiol. 41, 1233-1249 (1978). [PubMed]
  74. R. G. Vautin and B. M. Dow, “Color cell groups in foveal striate cortex of the behaving macaque,” J. Neurophysiol. 54, 273-292 (1985). [PubMed]
  75. R. L. De Valois and K. K. De Valois, “Neural coding of color,” in Handbook of Perception, Vol. 5 (Academic, 1975), pp. 117-166.
  76. R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053-1065 (1993). [CrossRef] [PubMed]
  77. P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649-669 (1990). [PubMed]
  78. E. N. Johnson, M. J. Hawken, and R. Shapley, “The spatial transformation of color in the primary visual cortex of the macaque monkey,” Nat. Neurosci. 4, 409-416 (2001). [CrossRef] [PubMed]
  79. J. S. Lund, Q. Wu, P. T. Hadingham, and J. B. Levitt, “Cells and circuits contributing to functional properties in area V1 of macaque monkey cerebral cortex: bases of neuroanatomically realistic models,” J. Anat. 187, 563-581 (1995). [PubMed]
  80. T. R. Vidyasagar, J. J. Kulikowski, A. Robson, and B. Dreher, “Responses of V1 cells in primate reveal excitatory convergence of P and M channels,” Eur. J. Neurosci. 10, S239 (1998). [CrossRef]
  81. J. J. Kulikowski and V. Walsh, “Demonstration of binocular fusion of color and texture,” in Early Vision and Beyond, T.Papathomas, ed. (MIT Press, 1995), pp. 27-32.
  82. J. J. Kulikowski, “Spatial and temporal properties of chromatic processing: Separation of colour from chromatic pattern mechanisms,” in John Dalton's Colour Vision Legacy (Taylor & Francis Ltd., 1997), pp.133-146.
  83. K. Kranda and P. E. King-Smith, “What can colour thresholds tell us about the nature of the underlying detection mechanisms,” Ophthalmic Physiol. Opt. 4, 83-87 (1984). [PubMed]
  84. C. W. G. Clifford, B. Spehar, S. G. Solomon, P. R. Martin, and Q. Zaidi, “Interactions between color and luminance in the perception of orientation.” J. Vision 3, 106-115 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited