OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Anisotropic reflectance from turbid media. I. Theory

Magnus Neuman and Per Edström  »View Author Affiliations


JOSA A, Vol. 27, Issue 5, pp. 1032-1039 (2010)
http://dx.doi.org/10.1364/JOSAA.27.001032


View Full Text Article

Enhanced HTML    Acrobat PDF (421 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown that the intensity of light reflected from plane-parallel turbid media is anisotropic in all situations encountered in practice. The anisotropy, in the form of higher intensity at large polar angles, increases when the amount of near-surface bulk scattering is increased, which dominates in optically thin and highly absorbing media. The only situation with isotropic intensity is when a non-absorbing infinitely thick medium is illuminated diffusely. This is the only case where the Kubelka–Munk model gives exact results and there exists an exact translation between Kubelka–Munk and general radiative transfer. This also means that a bulk scattering perfect diffusor does not exist. Angle-resolved models are thus crucial for a correct understanding of light scattering in turbid media. The results are derived using simulations and analytical calculations. It is also shown that there exists an optimal angle for directional detection that minimizes the error introduced when using the Kubelka–Munk model to interpret reflectance measurements with diffuse illumination.

© 2010 Optical Society of America

OCIS Codes
(290.4210) Scattering : Multiple scattering
(290.5820) Scattering : Scattering measurements
(290.7050) Scattering : Turbid media
(290.1483) Scattering : BSDF, BRDF, and BTDF

ToC Category:
Scattering

History
Original Manuscript: October 19, 2009
Revised Manuscript: February 16, 2010
Manuscript Accepted: February 22, 2010
Published: April 13, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Magnus Neuman and Per Edström, "Anisotropic reflectance from turbid media. I. Theory," J. Opt. Soc. Am. A 27, 1032-1039 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-27-5-1032


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Schuster, “Radiation through a foggy atmosphere,” Astrophys. J.  21, 1–22 (1905). [CrossRef]
  2. P. Kubelka and F. Munk, “Ein beitrag zur optik der farbanstriche,” Z. Tech. Phys. (Leipzig)  11a, 593–601 (1931).
  3. P. Kubelka, “New contributions to the optics of intensely light scattering materials. Part I,” J. Opt. Soc. Am.  38, 330–335 (1948).
  4. P. Kubelka, “New contributions to the optics of intensely light scattering materials. Part II,” J. Opt. Soc. Am.  44, 448–457 (1954). [CrossRef]
  5. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  6. P. Edström, “A fast and stable solution method for the radiative transfer problem,” SIAM Rev.  47, 447–468 (2005). [CrossRef]
  7. J. H. Nobbs, “Kubelka-Munk theory and the prediction of reflectance,” Rev. Prog. Coloration  15, 66–75 (1985). [CrossRef]
  8. M. J. Leskelä, “Optical calculations for multilayer papers,” Tappi J.  78, 167–172 (1995).
  9. P. Latimer and S. J. Noh, “Light propagation in moderately dense particle systems: a reexamination of the Kubelka-Munk theory,” Appl. Opt.  26, 514–523 (1987). [CrossRef] [PubMed]
  10. S. H. Kong and J. D. Shore, “Evaluation of the telegrapher’s equation and multiple-flux theories for calculating the transmittance and reflectance of a diffuse absorbing slab,” J. Opt. Soc. Am. A  24, 702–710 (2007). [CrossRef]
  11. J. A. van den Akker, “Scattering and absorption of light in paper and other diffusing media,” TAPPI  32, 498–501 (1949).
  12. W. J. Foote, “An investigation of the fundamental scattering and absorption coefficients of dyed handsheets,” Pap. Trade J.  109, 333–340 (1939).
  13. L. Nordman, P. Aaltonen, and T. Makkonen, “Relationship between mechanical and optical properties of paper affected by web consolidation,” in Transactions of the Symposium on the Consolidation of the Paper Web, F.Bolam, ed. (Technical Section, British Paper and Board Makers' Association, 1966), Vol.  2, pp. 909–927.
  14. S. Moldenius, “Light absorption coefficient spectra of hydrogen peroxide bleached mechanical pulp,” Pap. Puu  65, 747–756 (1983).
  15. M. Rundlöf and J. A. Bristow, “A note concerning the interaction between light scattering and light absorption in the application of the Kubelka-Munk equations,” J. Pulp Pap. Sci.  23, 220–223 (1997).
  16. J. A. van den Akker, “Theory of some of the discrepancies observed in application of the Kubelka-Munk equations to particulate systems,” in Modern Aspects of Reflectance Spectroscopy, W.W.Wendlandt, ed. (Plenum Press, 1968), pp. 27–46.
  17. A. A. Koukoulas and B. D. Jordan, “Effect of strong absorption on the Kubelka-Munk scattering coefficient,” J. Pulp Pap. Sci.  23, 224–232 (1997).
  18. J. A. van den Akker, “Discussion on ‘Relationships between mechanical and optical properties of paper affected by web consolidation’,” in Transactions of the Symposium on the Consolidation of the Paper Web,  Vol. 2, F.Bolam, ed. (Technical Section, British Board Makers' Association, 1966), pp. 948–950.
  19. H. Granberg and P. Edström, “Quantification of the intrinsic error of the Kubelka-Munk model caused by strong light absorption,” J. Pulp Pap. Sci.  29, 386–390 (2003).
  20. P. Edström, “Comparison of the DORT2002 radiative transfer solution method and the Kubelka-Munk model,” Nord. Pulp Pap. Res. J.  19, 397–403 (2004). [CrossRef]
  21. M. Neuman and P. Edström, “Anisotropic reflectance from turbid media. II. Measurements,” J. Opt. Soc. Am. A  27, 1040–1045 (2010). [CrossRef]
  22. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Lamperis, “Geometrical Considerations and Nomenclature for Reflectance,” (National Bureau of Standards, 1977).
  23. K. M. Case and P. F. Zweifel, Linear Transport Theory (Addison-Wesley, 1967).
  24. M. Choulli and P. Stefanov, “An inverse boundary value problem for the stationary transport equation,” Osaka J. Math.  36, 87–104 (1998).
  25. P. Mudgett and L. W. Richards, “Multiple scattering calculations for technology,” Appl. Opt.  10, 1485–1502 (1971). [CrossRef] [PubMed]
  26. P. Mudgett and L. W. Richards, “Multiple scattering calculations for technology II,” J. Colloid Interface Sci.  39, 551–567 (1972). [CrossRef]
  27. H. C. van de Hulst, Multiple Light Scattering. Tables, Formulas and Applications,  Vol. 2 (Academic, 1980).
  28. W. M. Star, J. P. A. Marijnissen, and M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol.  33, 437–454 (1998). [CrossRef]
  29. S. N. Thennadil, “Relationship between the Kubelka-Munk scattering and radiative transfer coefficients,” J. Opt. Soc. Am. A  25, 1480–1485 (2008). [CrossRef]
  30. A. A. Kokhanovsky, “Physical interpretation and accuracy of the Kubelka-Munk theory,” J. Phys. D: Appl. Phys.  20, 2210–2216 (2007). [CrossRef]
  31. A. Kokhanovsky and I. Hopkinson, “Some analytical approximations to radiative transfer theory and their application for the analysis of reflectance data,” J. Opt. A, Pure Appl. Opt.  10, 1–8 (2008). [CrossRef]
  32. ISO 2469: Paper, Board and Pulps—Measurement of Diffuse Reflectance Factor (International Organization for Standardization, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited