OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Measuring perceived differences in surface texture due to changes in higher order statistics

K. Emrith, M. J. Chantler, P. R. Green, L. T. Maloney, and A. D. F. Clarke  »View Author Affiliations

JOSA A, Vol. 27, Issue 5, pp. 1232-1244 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1890 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the ability of humans to perceive changes in the appearance of images of surface texture caused by the variation of their higher order statistics. We incrementally randomize their phase spectra while holding their first and second order statistics constant in order to ensure that the change in the appearance is due solely to changes in third and other higher order statistics. Stimuli comprise both natural and synthetically generated naturalistic images, with the latter being used to prevent observers from making pixel-wise comparisons. A difference scaling method is used to derive the perceptual scales for each observer, which show a sigmoidal relationship with the degree of randomization. Observers were maximally sensitive to changes within the 20%–60% randomization range. In order to account for this behavior we propose a biologically plausible model that computes the variance of local measurements of phase congruency.

© 2010 Optical Society of America

OCIS Codes
(330.5000) Vision, color, and visual optics : Vision - patterns and recognition
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5510) Vision, color, and visual optics : Psychophysics

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: August 10, 2009
Revised Manuscript: January 7, 2010
Manuscript Accepted: March 8, 2010
Published: April 30, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

K. Emrith, M. J. Chantler, P. R. Green, L. T. Maloney, and A. D. F. Clarke, "Measuring perceived differences in surface texture due to changes in higher order statistics," J. Opt. Soc. Am. A 27, 1232-1244 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. S. Landy and N. Graham, “Visual perception of texture,” in The Visual Neurosciences, L.M.Chalupa and J.S.Werner, eds. (MIT, 2004), pp. 1106–1118.
  2. J. Malik and P. Perona, “Preattentive texture discrimination with early vision mechanisms,” J. Opt. Soc. Am. A 7, 923–932 (1990). [CrossRef] [PubMed]
  3. T. Randen and J. H. Husøy, “Filtering for texture classification: a comparative study,” IEEE Trans. Pattern Anal. Mach. Intell. 21, 291–310 (1999). [CrossRef]
  4. M. J. Chantler, M. Petrou, A. Penirschke, M. Schmidt, and G. McGunnigle, “Classifying surface texture while simultaneously estimating illumination,” Int. J. Comput. Vis. 62, 83–96 (2005).
  5. P. Perona and J. Malik, “Detecting and localizing edges composed of steps, peaks and roofs,” in Proceedings of the ICCV (1990), pp. 52–57.
  6. I. Mareschal and C. L. Baker, “A cortical locus for the processing of contrast-defined contours,” Nat. Neurosci. 1, 150–154 (1998). [CrossRef]
  7. I. Mareschal and C. L. Baker, “Cortical processing of second-order motion,” Visual Neurosci. 16, 527–540 (1999). [CrossRef]
  8. A. P. Johnson and C. L. Baker, Jr., “First- and second-order information in natural images: a filter-based approach to image statistics,” J. Opt. Soc. Am. A 21, 913–925 (2004). [CrossRef]
  9. B. Julesz, “Visual discrimination of textures with identical third-order statistics,” Biol. Cybern. 31, 137–140 (1978). [CrossRef] [PubMed]
  10. T. Caelli and B. Julesz, “Psychophysical evidence for global feature processing in visual texture discrimination,” J. Opt. Soc. Am. 69, 675–678 (1979). [CrossRef] [PubMed]
  11. B. Julesz, “Spatial nonlinearities in the instantaneous perception of textures with identical power spectra,” Philos. Trans. R. Soc. London, Ser. B 290, 83–94 (1980). [CrossRef] [PubMed]
  12. B. Julesz, “A theory of preattentive texture discrimination based on first-order statistics of textons,” Biol. Cybern. 41, 131–138 (1981). [CrossRef] [PubMed]
  13. J. I. Yellott, Jr., “Implications of triple correlation uniqueness for texture statistics and the Julesz conjecture,” J. Opt. Soc. Am. A 10, 777–793 (1993). [CrossRef]
  14. C. Chubb, J. Econopouly, and M. S. Landy, “Histogram contrast analysis and the visual segregation of IID textures,” J. Opt. Soc. Am. A 11, 2350–2374 (1994). [CrossRef]
  15. J. D. Victor, “Images, statistics and textures: implications of triple correlation uniqueness for texture statistics and the Julesz conjecture: comment,” J. Opt. Soc. Am. A 11, 1680–1684 (1994). [CrossRef]
  16. J. D. Victor and M. M. Conte, “The role of high-order phase correlations in texture processing,” Vision Res. 36, 1615–1631 (1996). [CrossRef] [PubMed]
  17. C. Chubb and J. I. Yellott, “Every discrete, finite image is uniquely determined by its dipole histogram,” Vision Res. 40, 485–492 (2000). [CrossRef] [PubMed]
  18. C. W. Tyler, “Theory of texture discrimination of based on higher-order perturbations in individual texture samples,” Vision Res. 44, 2179–2186 (2004). [CrossRef] [PubMed]
  19. C. W. Tyler, “Beyond fourth-order texture discrimination: generation of extreme-order and statistically-balanced textures,” Vision Res. 44, 2187–2199 (2004). [CrossRef] [PubMed]
  20. M. O. Franz and B. Schőlkopf, “Implicit Wiener series for higher-order image analysis,” in Advances in Neural Information Processing Systems, L.K.Saul, Y.Weiss, and L.Bottou, eds. (MIT, 2005), Vol. 17, pp. 465–472.
  21. T. E. Hall and G. B. Giannakis, “Bispectral analysis and model validation of texture images,” IEEE Trans. Image Process. 4, 996–1009 (1995). [CrossRef] [PubMed]
  22. M. K. Tsatsanis and G. B. Giannakis, “Object and texture classification using higher order statistics,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 733–750 (1992). [CrossRef]
  23. A. V. Oppenheim and J. Lim, “The importance of phase in signals,” Proc. IEEE 69, 529–541(1981). [CrossRef]
  24. L. N. Piotrowski and F. Campbell, “A demonstration of the visual importance and flexibility of spatial-frequency amplitude and phase,” Perception 11, 337–346 (1982). [CrossRef] [PubMed]
  25. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987). [CrossRef] [PubMed]
  26. D. J. Field, “What the statistics of natural images tell us about visual coding,” in Human Vision, Visual Processing and Digital Display, Proc. SPIE 1077, 269–276 (1989).
  27. D. C. Knill, D. Field, and D. Kersten, “Human discrimination of fractal images,” J. Opt. Soc. Am. A 7, 1113–1123 (1990). [CrossRef] [PubMed]
  28. Y. Tadmor and D. J. Tolhurst, “Both the phase and amplitude spectrum may determine the appearance of natural images,” Vision Res. 33, 141–145 (1993). [CrossRef] [PubMed]
  29. M. C. Morrone and D. C. Burr, “Feature detection in human vision: a phase-dependent energy model,” Proc. R. Soc. London, Ser. B 235, 221–245 (1988). [CrossRef]
  30. P. Kovesi, “Phase congruency: a low-level image invariant,” Psychol. Res. 64, 136–148 (2000). [CrossRef]
  31. M. A. Thomson and D. H. Foster, “Role of second- and third-order statistics in the discriminability of natural images,” J. Opt. Soc. Am. A 14, 2081–2090 (1997). [CrossRef]
  32. M. A. Thomson, D. H. Foster, and R. J. Summers, “Human sensitivity to phase perturbations in natural images: a statistical framework,” Perception 29, 1057–1069 (2000). [CrossRef]
  33. V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005). [CrossRef] [PubMed]
  34. J. T. Lindgren, J. Hurri, and A. Hyvärinen, “Spatial dependencies between local luminance and contrast in natural images,” J. Vision 8, 1–13 (2008). [CrossRef]
  35. C. Baker, A. Yoonessi, and E. O. Arsenault, “Texture segmentation in natural images: contribution of higher-order image statistics to psychophysical performance,” J. Vision 8, 350 (2008). [CrossRef]
  36. W. Einhäuser, U. Rutishauser, E. P. Frady, S. Nadler, P. Kőnig, and C. Koch, “The relation of phase noise and luminance contrast to overt attention in complex visual stimuli,” J. Vision 6, 1148–1158 (2006). [CrossRef]
  37. F. A. Wichmann, D. I. Braun, and K. R. Gegenfurtner, “Phase noise and the classification of natural images,” Vision Res. 46, 1520–1529 (2006). [CrossRef]
  38. B. C. Hansen and R. F. Hess, “Structural sparseness and spatial phase alignment in natural scenes,” J. Opt. Soc. Am. A 24, 1873–1885 (2007). [CrossRef]
  39. A. Yoonessi and F. A. A. Kingdom, “Comparison of sensitivity to color changes in natural and phase-scrambled scenes,” Vision Res. 25, 676–684 (2008).
  40. O. R. Joubert, G. A. Rousselet, M. Fabre-Thorpe, and D. Fize, “Rapid visual categorization of natural scene contexts with equalized amplitude spectrum and increasing phase noise,” J. Vision 9, 1–16 (2009). [CrossRef]
  41. S. Padilla, O. Drbohlav, P. R. Green, A. D. Spence, and M. J. Chantler, “Perceived roughness of 1/fbeta noise surfaces,” Vision Res. 48, 1791–1797 (2008). [CrossRef] [PubMed]
  42. L. T. Maloney and J. N. Yang, “Maximum likelihood difference scaling,” J. Vision 3, 573–585 (2003). [CrossRef]
  43. C. Charrier, L. Maloney, H. Cherifi, and K. Knoblauch, “Maximum likelihood difference scaling of image quality in compression-degraded images,” J. Opt. Soc. Am. A 24, 3418–3426 (2007). [CrossRef]
  44. G. Obein, K. Knoblauch, and F. Viénot, “Difference scaling of gloss: nonlinearity, binocularity, and constancy,” J. Vision 4, 711–720 (2004). [CrossRef]
  45. K. Knoblauch and L. T. Maloney, “MLDS: maximum likelihood difference scaling in R,” J. Stat. Software 25, 1–26 (2008).
  46. M. C. Morrone and D. C. Burr, “Capture and transparency in coarse quantized images,” Vision Res. 37, 2609–2629 (1997). [CrossRef] [PubMed]
  47. A. Perna and M. Morrone, “The lowest spatial frequency channel determines brightness perception,” Vision Res. 47, 1282–1291 (2007). [CrossRef] [PubMed]
  48. P. Kovesi, “Edges are not just steps,” in Proceedings of the ACCV2002 (2002), pp. 822–827.
  49. http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/.
  50. C. Chubb, M. S. Landy, and J. Econopouly, “A visual mechanism tuned to black,” Vision Res. 44, 3223–3232 (2004). [CrossRef] [PubMed]
  51. G. S. Hesse and M. A. Georgeson, “Edges and bars: where do people see features in 1-D images?” Vision Res. 45, 507–525 (2005). [CrossRef]
  52. E. J. Kelman, R. J. Baddeley, A. J. Shohet, and D. Osorio, “Perception of visual texture and the expression of disruptive camouflage by the cuttlefish, sepia officinalis,” Proc. R. Soc. London, Ser. B 274, 1369–1375 (2007). [CrossRef]
  53. D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, 1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited