OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 9 — Jul. 6, 2010

Effect of optical aberrations on the color appearance of small defocused lights

Preeti Gupta, Huanqing Guo, David A. Atchison, and Andrew J. Zele  »View Author Affiliations

JOSA A, Vol. 27, Issue 5, pp. 960-967 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (510 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated influences of optics and surround area on color appearance of defocused, small narrow band photopic lights ( 1 arc diameter, λ max 510 628 nm ) centered within a black annulus and surrounded by a white field. Participants included seven normal trichromats with L- or M-cone biased ratios. We controlled chromatic aberration with elements of a Powell achromatizing lens and corrected higher-order aberrations with an adaptive optics system. Longitudinal chromatic aberrations, but not monochromatic aberrations, are involved in changing appearance of small lights with defocus. Surround field structure is important because color changes were not observed when lights were presented on a uniform white surround.

© 2010 Optical Society of America

OCIS Codes
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: September 24, 2009
Revised Manuscript: January 25, 2010
Manuscript Accepted: February 22, 2010
Published: April 5, 2010

Virtual Issues
Vol. 5, Iss. 9 Virtual Journal for Biomedical Optics

Preeti Gupta, Huanqing Guo, David A. Atchison, and Andrew J. Zele, "Effect of optical aberrations on the color appearance of small defocused lights," J. Opt. Soc. Am. A 27, 960-967 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143-166 (2008). [CrossRef]
  2. R. W. Burnham, “The dependence of color upon area,” Am. J. Psychol. 64, 521-533 (1951). [CrossRef] [PubMed]
  3. H. Hartridge, “Visibility of blue and yellow,” Nature 153, 775-776 (1949). [CrossRef]
  4. R. G. Horner and E. T. Purslow, “Dependence of anomaloscope matching on viewing-distance or field-size,” Nature 161, 484 (1948). [CrossRef] [PubMed]
  5. W. E. K. Middleton and M. C. Holmes, “The apparent colors of surfaces of small subtense--a preliminary report,” J. Opt. Soc. Am. 39, 582-591 (1949). [CrossRef]
  6. J. Krauskopf, “Color appearance of small stimuli and the spatial distribution of color receptors,” J. Opt. Soc. Am. 54, 1171-1171 (1964). [CrossRef]
  7. D. O. Weitzman and J. A. Kinney, “Appearance of color for small, brief, spectral stimuli, in the central fovea,” J. Opt. Soc. Am. 57, 665-670 (1967). [CrossRef] [PubMed]
  8. I. Abramov, J. Gordon, and H. Chan, “Color appearance across the retina: effects of a white surround,” J. Opt. Soc. Am. A 9, 195-202 (1992). [CrossRef] [PubMed]
  9. H. Uchikawa, K. Uchikawa, and R. M. Boynton, “Influence of achromatic surrounds on categorical perception of surface colors,” Vision Res. 29, 881-890 (1989). [CrossRef] [PubMed]
  10. V. C. Smith, P. Q. Jin, and J. Pokorny, “The role of spatial frequency in color induction,” Vision Res. 41, 1007-1021 (2001). [CrossRef] [PubMed]
  11. D. H. Marimont and B. A. Wandell, “Matching color images: the effects of axial chromatic aberration,” J. Opt. Soc. Am. A 11, 3113-3122 (1994). [CrossRef]
  12. N. P. Cottaris, “Artifacts in spatiochromatic stimuli due to variations in preretinal absorption and axial chromatic aberration: implications for color physiology,” J. Opt. Soc. Am. A 20, 1694-1713 (2003). [CrossRef]
  13. J. M. Wood, D. A. Atchison, and A. Chaparro, “When red lights look yellow,” Invest. Ophthalmol. Visual Sci. 6, 4348-4352 (2005). [CrossRef]
  14. W. D. W. Abney, “On the change in hue of spectrum colours by dilution with white light,” Proc. R. Soc. London, Ser. A 83, 120-127 (1909). [CrossRef]
  15. S. A. Burns, A. E. Elsner, J. Pokorny, and V. C. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479-489 (1984). [CrossRef] [PubMed]
  16. W. Kurtenbach, C. E. Sternheim, and L. Spillmann, “Change in hue of spectral colors by dilution with white light (Abney effect),” J. Opt. Soc. Am. A 1, 365-372 (1984). [CrossRef] [PubMed]
  17. R. L. Vimal, J. Pokorny, and V. C. Smith, “Appearance of steadily viewed lights,” Vision Res. 27, 1309-1318 (1987). [CrossRef] [PubMed]
  18. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564-565 (1957). [CrossRef] [PubMed]
  19. P. B. Kruger, S. Nowbotsing, K. R. Aggarwala, and S. Mathews, “Small amounts of chromatic aberration influence dynamic accommodation,” Optom. Vision Sci. 72, 656-666 (1995). [CrossRef]
  20. G. A. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321-336 (1947). [CrossRef] [PubMed]
  21. D. I. Flitcroft, “The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry,” Vision Res. 29, 349-360 (1989). [CrossRef] [PubMed]
  22. J. D. Forte, E. M. Blessing, P. Buzas, and P. R. Martin, “Contribution of chromatic aberrations to color signals in the primate visual system,” J. Vision 6, 97-105 (2006). [CrossRef]
  23. F. J. Rucker and D. Osorio, “The effects of longitudinal chromatic aberration and a shift in the peak of the middle-wavelength sensitive cone fundamental on cone contrast,” Vision Res. 48, 1929-1939 (2008). [CrossRef] [PubMed]
  24. J. S. McLellan, S. Marcos, P. M. Prieto, and S. A. Burns, “Imperfect optics may be the eye's defence against chromatic blur,” Nature 417, 174-176 (2002). [CrossRef] [PubMed]
  25. V. M. Reading and R. A. Weale, “Macular pigment and chromatic aberration,” J. Opt. Soc. Am. 64, 231-234 (1974). [CrossRef] [PubMed]
  26. H. Hofer, B. Singer, and D. R. Williams, “Different sensations from cones with the same photopigment,” J. Vision 5, 444-454 (2005). [CrossRef]
  27. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607-614 (2000). [CrossRef]
  28. J. Pokorny and V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53-56 (1987).
  29. J. Pokorny, V. C. Smith, and M. Lutze, “Heterochromatic modulation photometry,” J. Opt. Soc. Am. A 6, 1618-1623 (1989). [CrossRef] [PubMed]
  30. J. Pokorny, H. Smithson, and J. Quinlan, “Photostimulator allowing independent control of rods and the three cone types,” Visual Neurosci. 21, 263-267 (2004). [CrossRef]
  31. D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vision Res. 48, 2586-2592 (2008). [CrossRef] [PubMed]
  32. A. J. Zele, D. Cao, and J. Pokorny, “Rod-cone interactions and the temporal impulse response of the cone pathway,” Vision Res. 48, 2593-2598 (2008). [CrossRef] [PubMed]
  33. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161-171 (1975). [CrossRef] [PubMed]
  34. J. Carroll, C. McMahon, M. Neitz, and J. Neitz, “Flicker-photometric electroretinogram estimates of L:M cone photoreceptor ratio in men with photopigment spectra derived from genetics,” J. Opt. Soc. Am. A 17, 499-509 (2000). [CrossRef]
  35. J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517-526 (2000). [CrossRef]
  36. J. Pokorny, V. C. Smith, and M. F. Wesner, “Variability in cone populations and implications,” in From Pigments to Perception: Advances in Understanding the Visual Process, B.B.Lee and A.Valberg, eds. (NATO Science Series, 1991), pp. 23-34. [CrossRef]
  37. Y. Le Grand and S. El Hage, Physiological Optics (Springer-Verlag, 1980).
  38. I. Powell, “Lenses for correcting chromatic aberration of the eye,” Appl. Opt. 20, 4152-4155 (1981). [CrossRef] [PubMed]
  39. P. A. Howarth and A. Bradley, “The longitudinal chromatic aberration of the human eye, and its correction,” Vision Res. 26, 361-366 (1986). [CrossRef] [PubMed]
  40. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594-3600 (1992). [CrossRef] [PubMed]
  41. D. A. Atchison, H. Guo, and S. W. Fisher, “Limits of spherical blur determined with an adaptive optics mirror,” Ophthalmic Physiol. Opt. 29, 300-311 (2009). [CrossRef] [PubMed]
  42. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14, 8900-8917 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited