OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Holographic optical trapping of microrods and nanowires

Stephen H. Simpson and Simon Hanna  »View Author Affiliations

JOSA A, Vol. 27, Issue 6, pp. 1255-1264 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (737 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Holographic optical tweezing permits the trapping of objects with less than spherical symmetry in appropriately distributed sets of beams thereby permitting control to be exerted over both the orientation and position. In contrast to the familiar case of the singly trapped sphere, the stiffness and strength of such compound traps will have rotational components. We investigate this for a simple model system consisting of multiply trapped dielectric cylinder. Optically induced forces and torques are evaluated using the discrete dipole approximation and the resulting trap stiffnesses are presented. A variety of configurations of trapping beams are considered. Hydrodynamic resistances for the cylinder are also calculated and used to estimate translation and rotation rates. A number of conclusions are reached concerning the optimal trapping and dragging conditions for the rod. In particular, it is clear that it is advantageous to drag a rod in a direction perpendicular rather than parallel to its length. In addition, it is observed that the polarization of the incident light plays a significant role. Finally, it is noted that the non-conservative nature of the optical force field manifests itself directly in the stiffness of the trapped cylinder. The consequences of this last point are discussed.

© 2010 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(290.5850) Scattering : Scattering, particles
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 20, 2010
Manuscript Accepted: March 20, 2010
Published: May 12, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Stephen H. Simpson and Simon Hanna, "Holographic optical trapping of microrods and nanowires," J. Opt. Soc. Am. A 27, 1255-1264 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. H. Simpson and S. Hanna, “Rotation of absorbing spheres in Laguerre–Gaussian beams,” J. Opt. Soc. Am. A 26, 173–183 (2009). [CrossRef]
  2. S. H. Simpson and S. Hanna, “Optical angular momentum transfer by Laguerre–Gaussian beams,” J. Opt. Soc. Am. A 26, 625–638 (2009). [CrossRef]
  3. A. Rohrbach, “Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory,” Phys. Rev. Lett. 95, 168102 (2005). [CrossRef] [PubMed]
  4. S. H. Simpson and S. Hanna, “Thermal motion of a holographically trapped SPM-like probe,” Nanotechnology 20, 395710 (2009). [CrossRef] [PubMed]
  5. K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004). [CrossRef]
  6. N. B. Viana, A. Mazolli, P. A. M. Neto, H. M. Nussenzveig, M. S. Rocha, and O. N. Mesquita, “Absolute calibration of optical tweezers,” Appl. Phys. Lett. 88, 131110 (2006). [CrossRef]
  7. E.-L. Florin, A. Pralle, E. H. K. Stelzer, and J. K. H. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998). [CrossRef]
  8. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007). [CrossRef] [PubMed]
  9. H. Kress, E. H. K. Stelzer, and A. Rohrbach, “Tilt angle dependent three-dimensional-position detection of a trapped cylindrical particle in a focused laser beam,” Appl. Phys. Lett. 84, 4271–4273 (2004). [CrossRef]
  10. T. Yu, F. Cheong, and C. Sow, “The manipulation and assembly of CuO nanorods with line optical tweezers,” Nanotechnology 15, 1732–1736 (2004). [CrossRef]
  11. L. Ikin, D. M. Carberry, G. M. Gibson, M. J. Padgett, and M. J. Miles, “Assembly and force measurement with SPM-like probes in holographic optical tweezers,” New J. Phys. 11, 023012 (2009). [CrossRef]
  12. R. Agarwal, K. Ladavac, Y. Roichman, G. H. Yu, C. M. Lieber, and D. G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906–8912 (2005). [CrossRef] [PubMed]
  13. T. L. Min, P. J. Mears, L. M. Chubiz, I. Golding, Y. R. Chemla, and C. V. Rao, “High-resolution, long-term characterization of bacterial motility using optical tweezers,” Nat. Methods 6, 831–835 (2009). [CrossRef] [PubMed]
  14. D. Benito, S. H. Simpson, and S. Hanna, “FDTD simulations of forces on particles during holographic assembly,” Opt. Express 16, 2942–2957 (2008). [CrossRef] [PubMed]
  15. J.-Q. Qin, X.-L. Wang, D. Jia, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17, 8407–8416 (2009). [CrossRef] [PubMed]
  16. D. A. White, “Numerical modeling of optical gradient traps using the vector finite element method,” J. Comput. Phys. 159, 13–37 (2000). [CrossRef]
  17. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoener, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A, Pure Appl. Opt. 9, S196–S203 (2007). [CrossRef]
  18. S. H. Simpson and S. Hanna, “Numerical calculation of inter-particle forces arising in association with holographic assembly,” J. Opt. Soc. Am. A 23, 1419–1431 (2006). [CrossRef]
  19. S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430–443 (2007). [CrossRef]
  20. A. B. Stilgoe, T. A. Nieminen, G. Knoner, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16, 15039–15051 (2008). [CrossRef] [PubMed]
  21. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997). [CrossRef]
  22. P. W. Barber, “Resonance electromagnetic absorption by nonspherical dielectric objects,” IEEE Trans. Microwave Theory Tech. 25, 373–381 (1977). [CrossRef]
  23. V.K.Varadan and V.V.Varadan, eds., Acoustic, Electromagnetic and Elastic Wave Scattering: Focus on theT-matrix Approach (Pergamon, 1980).
  24. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
  25. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106, 558–589 (2007). [CrossRef]
  26. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett. 88, 123601 (2002). [CrossRef] [PubMed]
  27. D. Bonessi, K. Bonin, and T. Walker, “Optical forces on particles of arbitrary shape and size,” J. Opt. A, Pure Appl. Opt. 9, S228–S234 (2007). [CrossRef]
  28. J. Trojek, V. Karasek, and P. Zemanek, “Extreme axial optical force in a standing wave achieved by optimized object shape,” Opt. Express 17, 10472–10488 (2009). [CrossRef] [PubMed]
  29. A. Penttila, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106, 417–436 (2007). [CrossRef]
  30. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  31. P. C. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000). [CrossRef]
  32. A. Greenbaum, Iterative Methods for Solving Linear Systems (SIAM, 1997). [CrossRef]
  33. R. W. Freund, “Conjugate gradient-type methods for linear-systems with complex symmetrical coefficient matrices,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 13, 425–448 (1992). [CrossRef]
  34. P. C. Chaumet, A. Rahmani, A. Sentenac, and G. W. Bryant, “Efficient computation of optical forces with the coupled dipole method,” Phys. Rev. E 72, 046708 (2005). [CrossRef]
  35. P. C. Chaumet and C. Billaudeau, “Coupled dipole method to compute optical torque: application to a micropropeller,” J. Appl. Phys. 101, 023106 (2007). [CrossRef]
  36. J. J. Goodman, B. T. Draine, and P. J. Flatau, “Application of fast Fourier transform techniques to the discrete-dipole approximation,” Opt. Lett. 16, 1198–1200 (1991). [CrossRef] [PubMed]
  37. M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93, 216–231 (2005). [CrossRef]
  38. C. J. R. Sheppard and S. Saghafi, “Electromagnetic Gaussian beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 16, 1381–1386 (1999). [CrossRef]
  39. A. L. Cullen and P. K. Yu, “Complex source-point theory of the electromagnetic open resonator,” Proc. R. Soc. London, Ser. A 366, 155–171 (1979). [CrossRef]
  40. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Programming, 3rd ed. (Cambridge U. Press, 2007).
  41. M.Abramowitz and I.A.Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, 1965).
  42. J. M. García Bernal and J. García de la Torre, “Transport-properties and hydrodynamic centers of rigid macromolecules with arbitrary shapes,” Biopolymers 19, 751–766 (1980). [CrossRef]
  43. B. Carrasco and J. García de la Torre, “Hydrodynamic properties of rigid particles: comparison of different modeling and computational procedures,” Biophys. J. 76, 3044–3057 (1999). [CrossRef] [PubMed]
  44. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users Guide (SIAM, 1997). [CrossRef]
  45. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, 2nd ed. (Noordhoff International, 1973).
  46. D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems, 3rd ed. (Oxford U. Press, 1999).
  47. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  48. Y. Roichman, B. Sun, A. Stolarski, and D. G. Grier, “Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: The fountain of probability,” Phys. Rev. Lett. 101, 128301 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited