OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 10 — Jul. 19, 2010

Separation of CARS image contributions with a Gaussian mixture model

Nadine Vogler, Thomas Bocklitz, Melissa Mariani, Volker Deckert, Aneta Markova, Peter Schelkens, Petra Rösch, Denis Akimov, Benjamin Dietzek, and Jürgen Popp  »View Author Affiliations


JOSA A, Vol. 27, Issue 6, pp. 1361-1371 (2010)
http://dx.doi.org/10.1364/JOSAA.27.001361


View Full Text Article

Enhanced HTML    Acrobat PDF (3100 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coherent anti-Stokes Raman scattering (CARS) gained a lot of importance in chemical imaging. This is due to the fast image acquisition time, the high spatial resolution, the non-invasiveness, and the molecular sensitivity of this method. By using the single-line CARS in contrast to the multiplex CARS, different signal contributions stemming from resonant and non-resonant light–matter interactions are indistinguishable. Here a numerical method is presented in order to extract more information from univariate CARS images: vibrational composition, morphological information, and contributions from index-of-refraction steps can be separated from single-line CARS images. The image processing algorithm is based on the physical properties of CARS process as reflected in the shape of the intensity histogram of univariate CARS images. Because of this the comparability of individual CARS images recorded with different experimental parameters is achieved. The latter is important for a quantitative evaluation of CARS images.

© 2010 Optical Society of America

OCIS Codes
(150.1135) Machine vision : Algorithms
(100.3008) Image processing : Image recognition, algorithms and filters
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Image Processing

History
Original Manuscript: November 6, 2009
Revised Manuscript: March 4, 2010
Manuscript Accepted: April 1, 2010
Published: May 14, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Nadine Vogler, Thomas Bocklitz, Melissa Mariani, Volker Deckert, Aneta Markova, Peter Schelkens, Petra Rösch, Denis Akimov, Benjamin Dietzek, and Jürgen Popp, "Separation of CARS image contributions with a Gaussian mixture model," J. Opt. Soc. Am. A 27, 1361-1371 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-27-6-1361


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their composition using Raman spectroscopy,” Cancer Res. 62, 5375–5380 (2002). [PubMed]
  2. T. Bocklitz, M. Putsche, C. Stüber, J. Käs, A. Niendorf, P. Rösch, and J. Popp, “A comprehensive study of classification methods for medical diagnosis,” J. Raman Spectrosc. 40, 1759–1765 (2009). [CrossRef]
  3. C. Matthäus, T. Chernenko, J. A. Newmark, C. M. Warner, and M. Diem, “Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy,” Biophys. J. 93, 668–673 (2007). [CrossRef] [PubMed]
  4. T. Dörfer, W. Schumacher, N. Tarcea, M. Schmitt, and J. Popp, “Quantitative mineral analysis using Raman spectroscopy and chemometric techniques,” J. Raman Spectrosc. 10, 10.1002/jrs.2503 (2009). [CrossRef]
  5. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. V. Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008). [CrossRef] [PubMed]
  6. Y. S. Huh, A. J. Chung, and D. Erickson, “Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis,” Microfluid. Nanofluid. 6, 285–297 (2009). [CrossRef]
  7. K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008). [CrossRef]
  8. Z.-Q. Tian, B. Ren, J.-F. Li, and Z.-L. Yang, “Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy,” Chem. Commun. (Cambridge) 2007, 3514–3534. [CrossRef]
  9. B.-S. Yeo, J. Stadler, T. Schmid, R. Zenobi, and W. Zhang, “Tip-enhanced Raman spectroscopy—its status, challenges and future directions,” Chem. Phys. Lett. 472, 1–3 (2009). [CrossRef]
  10. D. Cialla, R. Siebert, U. Hübner, R. Möller, H. Schneidewind, R. Mattheis, J. Petschulat, A. Tünnermann, T. Pertsch, B. Dietzek, and J. Popp, “Ultrafast plasmon dynamics and evanescent field distribution of reproducible surface-enhanced Raman-scattering substrates,” Anal. Bioanal. Chem. 394, 1811–1818 (2009). [CrossRef] [PubMed]
  11. A. C. Albrecht, “On the theory of Raman intensities,” J. Chem. Phys. 34, 1476–1484 (1961). [CrossRef]
  12. A. Myers, “Resonance Raman intensities and charge-transfer reorganization energies,” Chem. Rev. (Washington, D.C.) 96, 911–926 (1996). [CrossRef]
  13. S. Tschierlei, B. Dietzek, M. Karnahl, S. Rau, F. M. MacDonnell, M. Schmitt, and J. Popp, “Resonance Raman studies of photochemical molecular devices for multielectron storage,” J. Raman Spectrosc. 39, 557–559 (2008). [CrossRef]
  14. M. Schmitt, G. Knopp, A. Materny, and W. Kiefer, “Femtosecond time-resolved coherent anti-stokes Raman scattering for the simultaneous study of ultrafast ground and excited state dynamics: iodine vapour,” Chem. Phys. Lett. 270, 9–15 (1997). [CrossRef]
  15. M. O. Scully, G. W. Kattawar, R. P. Lucht, T. Opatrny, H. Pilloff, A. Rebane, A. V. Sokolov, and M. S. Zubairy, “FAST CARS: engineering a laser spectroscopic technique for rapid identification of bacterial spores,” Proc. Natl. Acad. Sci. U.S.A. 99, 10994–11001 (2002). [CrossRef] [PubMed]
  16. R. Maksimenka, B. Dietzek, A. Szeghalmi, T. Siebert, W. Kiefer, and M. Schmitt, “Population dynamics of vibrational modes in stilbene-3 upon photoexcitation to the first excited state,” Chem. Phys. Lett. 408, 37–43 (2005). [CrossRef]
  17. E. Potma, W. P. de Boeij, P. J. van Haastert, and D. A. Wiersma, “Real-time visualization of intracellular hydrodynamics in single living cells,” Proc. Natl. Acad. Sci. U.S.A. 98, 1577–1582 (2001). [CrossRef] [PubMed]
  18. M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman scattering microscopy,” ChemPhysChem 8, 2156–2170 (2007). [CrossRef] [PubMed]
  19. B. von Vacano, W. Wohlleben, and M. Motzkus, “Single-beam CARS spectroscopy applied to low-wavenumber vibrational modes,” J. Raman Spectrosc. 37, 404–410 (2006). [CrossRef]
  20. C. Krafft, A. A. Ramoji, C. Bielecki, N. Vogler, T. Meyer, D. Akimov, P. Rösch, M. Schmitt, B. Dietzek, I. Petersen, A. Stallmach, and J. Popp, “A comparative Raman and CARS imaging study of colon tissue,” J. Biophotonics 2, 303–312 (2009). [CrossRef] [PubMed]
  21. C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst (Cambridge, U.K.) 134, 1046–1057 (2009). [CrossRef]
  22. A. Walter, S. Erdmann, T. Bocklitz, E.-M. Jung, N. Vogler, D. Akimov, B. Dietzek, P. Rösch, E. Kothe, and J. Popp, “Detection of cytochrome distribution via linear and nonlinear Raman spectroscopy,” Analyst (Cambridge, U.K.) 135, 908–917 (2010). [CrossRef]
  23. T. Meyer, D. Akimov, N. Tarcea, S. Chatzipapadopoulos, G. Muschiolik, J. Kobow, M. Schmitt, and J. Popp, “Three-dimensional molecular mapping of a multiple emulsion by means of CARS microscopy,” J. Phys. Chem. B 112, 1420–1426 (2008). [CrossRef] [PubMed]
  24. T. Baldacchini, M. Zimmerley, C.-H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-Stokes Raman scattering microscopy,” J. Phys. Chem. B 113, 12663–12668 (2009). [CrossRef] [PubMed]
  25. M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14, 044019 (2009). [CrossRef] [PubMed]
  26. G. Bergner, S. Chatzipapadopoulos, D. Akimov, B. Dietzek, D. Malsch, T. Henkel, S. Schlücker, and J. Popp, “Quantitative CARS microscopic detection of analytes and their isotopomers in a two-channel microfluidic chip,” Small 5, 2816–2818 (2009). [CrossRef] [PubMed]
  27. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999). [CrossRef]
  28. J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19, 1363–1375 (2002). [CrossRef]
  29. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 2002).
  30. J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26, 1341–1343 (2001). [CrossRef]
  31. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002). [CrossRef]
  32. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001). [CrossRef]
  33. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31, 1872–1874 (2006). [CrossRef] [PubMed]
  34. C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29, 2923–2925 (2004). [CrossRef]
  35. J. Hagmar, C. Brackmann, T. Gustavsson, and A. Enejder, “Image analysis in nonlinear microscopy,” J. Opt. Soc. Am. A 25, 2195–2206 (2008). [CrossRef]
  36. H. A. Rinia, M. Bonn, and M. Müller, “Quantitative multiplex CARS spectroscopy in congested spectral regions,” J. Phys. Chem. B 110, 4472–4479 (2006). [CrossRef] [PubMed]
  37. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-o Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett. 33, 923–925 (2008). [CrossRef] [PubMed]
  38. D. Akimov, S. Chatzipapadopoulos, T. Meyer, N. Tarcea, B. Dietzek, M. Schmitt, and J. Popp, “Different contrast information obtained from CARS and nonresonant FWM images,” J. Raman Spectrosc. 40, 941–947 (2009). [CrossRef]
  39. M. D. Levenson and N. Bloembergen, “Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media,” Phys. Rev. B 10, 4447–4463 (1974). [CrossRef]
  40. D. Gachet, F. Billard, N. Sandeau, and H. Rigneault, “Coherent anti-Stokes Raman scattering (CARS) microscopy imaging at interfaces: evidence of interference effects,” Opt. Express 15, 10408–10420 (2007). [CrossRef] [PubMed]
  41. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the em algorithm,” J. R. Stat. Soc. Ser. B (Methodol.) 39, 1–38 (1977).
  42. A. Volkmer, J.-X. Cheng, and X. Sunney Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901 (2001). [CrossRef]
  43. M. M. Mariani, P. Lampen, L. J. Maccoux, B. R. Wood, and V. Deckert, “FT-IR mapping of keratinocyte organizational profiles during in vitro wound healing,” (submitted to Biochim. Biophys. Acta).
  44. http://www.r-project.org.
  45. R. Bivand, F. Leisch, and M. Mächler, pixmap: Bitmap Images (“Pixel Maps”), R package version 0.4-7, 2007.
  46. Nikon Systems Inc., rimage: Image Processing Module for R, R package version 0.5-7, 2005.
  47. C. Fraley and A. Raftery, mclust: Model-Based Clustering/Normal Mixture Modeling, R package version 3.1-5, 2008.
  48. O. Sklyar, W. Huber, and M. Smith, EBImage: Image Processing and Image Analysis Toolkit for R, R package version 2.2.0, 2007.
  49. S. Borman, “The expectation maximization algorithm—a short tutorial,” http://www.isi.edu/natural-language/teaching/cs562/2009/readings/B06.pdf.
  50. F. Dellaert, “The expectation maximization algorithm,” Georgia Institute of Technology, Tech. Report GIT-GVU-02–20 (February 2002).
  51. M. Frigge, D. C. Hoaglin, and B. Iglewicz, “Some implementations of the boxplot,” Am. Stat. 43, 50–54 (1989). [CrossRef]
  52. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003). [CrossRef]
  53. M. S. Jeansonne and J. P. Foley, “Improved equations for calculation of chromatographic figures of merit for ideal and skewed chromatographic peaks,” J. Chromatogr. A 594, 1–8 (1992). [CrossRef]
  54. M. S. Jeansonne and J. P. Foley, “Review of the exponentially modified Gaussian (EMG) function since 1983,” J. Chromatogr. Sci. 29, 258–266 (1991).
  55. P. J. Naish and S. Hartwell, “Exponentially modified Gaussian functions—a good model for chromatographic peaks in isocratic HPLC?” Chromatographia 26, 285–296 (1988). [CrossRef]
  56. K. Lan and J. W. Jorgenson, “A hybrid of exponential and Gaussian functions as a simple model of asymmetric chromatographic peaks,” J. Chromatogr. A 915, 1–13 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited