OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 11 — Aug. 25, 2010

Correlation between radius and asphericity in surfaces fitted by conics

Alfonso Pérez-Escudero, Carlos Dorronsoro, and Susana Marcos  »View Author Affiliations


JOSA A, Vol. 27, Issue 7, pp. 1541-1548 (2010)
http://dx.doi.org/10.1364/JOSAA.27.001541


View Full Text Article

Enhanced HTML    Acrobat PDF (464 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical surfaces of the eye are often described in terms of their radius and asphericity. The variations caused by experimental noise in repeated measurements of radius and asphericity of the same surface are strongly correlated. We show this correlation in experimental corneal elevation data from videokeratoscopy and Scheimpflug topography, in non-contact profilometry data of artificial lenses, and in simulations. The effect is a characteristic of the fits to conic curves, and not restricted to any experimental device or fitting procedure. A separate analysis of radius and asphericity may estimate incorrectly the statistical significance of the changes in the ocular surfaces. We propose a MANOVA-based statistical analysis that increases sensitivity by a factor of 4.

© 2010 Optical Society of America

OCIS Codes
(330.4875) Vision, color, and visual optics : Optics of physiological systems
(330.7325) Vision, color, and visual optics : Visual optics, metrology

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: December 23, 2009
Revised Manuscript: March 20, 2010
Manuscript Accepted: May 3, 2010
Published: June 2, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Alfonso Pérez-Escudero, Carlos Dorronsoro, and Susana Marcos, "Correlation between radius and asphericity in surfaces fitted by conics," J. Opt. Soc. Am. A 27, 1541-1548 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-27-7-1541


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Kiely, G. Smith, and L. Carney, “The mean shape of the human cornea,” Opt. Acta 29, 1027–1042 (1982). [CrossRef]
  2. A. Guirao and P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000). [CrossRef]
  3. W. Lotmar, “Theoretical eye model with aspheric surfaces,” J. Opt. Soc. Am. A 61, 1522–1529 (1971). [CrossRef]
  4. R. Mandell and R. St Helen, “Mathematical model of the corneal contour,” Br. J. Physiol. Opt. 26, 183–197 (1971).
  5. L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, “Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations,” J. Vision 4, 288–298 (2004). [CrossRef]
  6. P. M. Kiely, L. G. Carney, and G. Smith, “Diurnal-variations of corneal topography and thickness,” Am. J. Optom. Physiol. Opt. 59, 976–982 (1982). [PubMed]
  7. V. Sicam, M. Dubbelman, and R. G. L. van der Heijde, “Spherical aberration of the anterior and posterior surface of the human cornea,” J. Opt. Soc. Am. A 23, 544–549 (2006). [CrossRef]
  8. S. Marcos, D. Cano, and S. Barbero, “Increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm,” J. Refract. Surg. 19, 592–596 (2003).
  9. A. Perez-Escudero, C. Dorronsoro, L. Sawides, L. Remon, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic maser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci. 50, 4146–4154 (2009). [CrossRef] [PubMed]
  10. F. Manns, A. Ho, J. M. Parel, and W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refractive Surg. 28, 766–774 (2002). [CrossRef]
  11. F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78, 39–51 (2004). [CrossRef]
  12. C. E. Jones, D. A. Atchison, and J. M. Pope, “Changes in lens dimensions and refractive index with age and accommodation,” Optom. Vision Sci. 84, 990–995 (2007). [CrossRef]
  13. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45, 117–132 (2005). [CrossRef]
  14. M. Dubbelman and V. Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001). [CrossRef] [PubMed]
  15. H. H. Dietze and M. J. Cox, “Correcting ocular spherical aberration with soft contact lenses,” J. Opt. Soc. Am. A 21, 473–485 (2004). [CrossRef]
  16. C. Dorronsoro, M. J. González, L. Llorente, and S. Marcos, “Optical and Visual quality with multifocal contact lenses,” Invest. Ophthalmol. Vis. Sci. 48, E-Abstract 5376 (2007).
  17. J. Tabernero, P. Piers, A. Benito, M. Redondo, and P. Artal, “Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration,” Invest. Ophthalmol. Vis. Sci. 47, 4651–4658 (2006). [CrossRef] [PubMed]
  18. S. Marcos, S. Barbero, and I. Jiménez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21, 223–235 (2005). [PubMed]
  19. J. Schwiegerling, J. Greivenkamp, and J. Miller, “Representation of videokeratoscopic height data with Zernike polynomials,” J. Opt. Soc. Am. A 12, 2105–2113 (1995). [CrossRef]
  20. M. Dubbelman, H. Weeber, R. Van Der Heijde, and H. Volker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80, 379–383 (2002). [CrossRef] [PubMed]
  21. S. Radhakrishnan, A. Rollins, J. Roth, S. Yazdanfar, V. Westphal, D. Bardenstein, and J. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. (Chicago) 119, 1179–1185 (2001).
  22. B. J. Kaluzy, J. J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography—A novel technique for cornea imaging,” Cornea 25, 960–965 (2006). [CrossRef] [PubMed]
  23. A. M. Rosen, D. B. Denharn, V. Fernandez, D. Boria, A. Ho, F. Matins, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46, 1002–1009 (2006). [CrossRef]
  24. C. Dorronsoro, L. Remon, J. Merayo-Lloves, and S. Marcos, “Experimental evaluation of optimized ablation patterns for laser refractive surgery,” Opt. Express 17, 15292–15307 (2009). [CrossRef] [PubMed]
  25. C. Dorronsoro, D. Cano, J. Merayo, and S. Marcos, “Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape,” Opt. Express 14, 6142–6156 (2006). [CrossRef] [PubMed]
  26. K. Kanatani, “Statistical bias of conic fitting and renormalization,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 320–326 (1994). [CrossRef]
  27. Y. Nakagawa and A. Rosenfeld, “A note on polygonal and elliptical approximation of mechanical parts,” Pattern Recogn. 11, 133–142 (1979). [CrossRef]
  28. A. W. Fitzgibbon and R. B. Fischer, “A buyer’s guide to conic fitting,” in Proceedings of the British Machine Vision Conference (1995), pp. 265–271.
  29. R. Artigas, F. Laguarta, and C. Cadevall, “Dual-technology optical sensor head for 3D surface shape measurements on the micro- and nanoscales,” Proc. SPIE 5457, 166–174 (2004). [CrossRef]
  30. X. Hong, J. Xie, S. J. N. Van, D. Stanley, M. Karakelle, M. J. Simpson, X. Zhang, “Ophthalmic lens as intraocular lens comprises optic having anterior surface and posterior surface, where at least one of the surfaces has an aspherical base profile such that the optic exhibits specific negative spherical aberration,” patent WO2006108005-A2, 12 October 2006.
  31. R. Navarro, L. Gonzalez, and J. L. Hernandez, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am. A 23, 219–232 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited