OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 11 — Aug. 25, 2010

Resolution properties of nonlinear optical microscopy

Naoki Fukutake  »View Author Affiliations

JOSA A, Vol. 27, Issue 7, pp. 1701-1707 (2010)

View Full Text Article

Acrobat PDF (157 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the resolution properties of nonlinear optical microscopy systems that use nonlinear optical effects, such as multiphoton-excited fluorescence, second- and third-harmonic generation, coherent anti-Stokes Raman scattering, and stimulated-emission depletion. Image formation formulas are presented that unitedly describe the properties of the image observed, wherein coherent, incoherent, or mixed-coherent phenomena are utilized. We develop the formalism for the optical resolution of all types of nonlinear systems. The properties of image formation represented by the transmission cross-coefficient are different depending on the type of nonlinear systems.

© 2010 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.2990) Imaging systems : Image formation theory
(110.4850) Imaging systems : Optical transfer functions
(180.6900) Microscopy : Three-dimensional microscopy
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: March 29, 2010
Revised Manuscript: May 28, 2010
Manuscript Accepted: June 2, 2010
Published: June 24, 2010

Virtual Issues
Vol. 5, Iss. 11 Virtual Journal for Biomedical Optics

Naoki Fukutake, "Resolution properties of nonlinear optical microscopy," J. Opt. Soc. Am. A 27, 1701-1707 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef]
  2. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003). [CrossRef]
  3. E. H. K. Stelzer, S. W. Hell, S. Lindek, R. Pick, C. Storz, R. Stricker, G. Ritter, and N. Salmon, “Non-linear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the illumination volume,” Opt. Commun. 104, 223–228 (1994). [CrossRef]
  4. I. Freund and M. Deutsch, “Second-harmonic microscopy of biological tissue,” Opt. Lett. 11, 94–96 (1986). [CrossRef]
  5. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001). [CrossRef]
  6. J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196, 325–330 (2001). [CrossRef]
  7. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third-harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1997). [CrossRef]
  8. M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc. 191, 266–274 (1998). [CrossRef]
  9. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7, 350–352 (1982). [CrossRef]
  10. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrational microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999). [CrossRef]
  11. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef]
  12. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, “Resolution scaling in STED microscopy,” Opt. Express 16, 4154–4162 (2008). [CrossRef]
  13. C. J. R. Sheppard, M. Gu, Y. Kawata, and S. Kawata, “Three-dimensional transfer functions for high-aperture systems,” J. Opt. Soc. Am. A 11, 593–598 (1994). [CrossRef]
  14. M. Gu and C. J. R. Sheppard, “Three-dimensional optical transfer function in a fiber-optical confocal fluorescence microscope using annular lenses,” J. Opt. Soc. Am. A 9, 1991–1999 (1992). [CrossRef]
  15. S. Kawata, R. Arimoto, and O. Nakamura, “Three-dimensional optical-transfer-function analysis for a laser-scan fluorescence microscope with an extended detector,” J. Opt. Soc. Am. A 8, 171–175 (1991). [CrossRef]
  16. M. Gu and D. Bird, “Three-dimensional optical-transfer-function analysis of fiber-optical two-photon fluorescence microscopy,” J. Opt. Soc. Am. A 20, 941–947 (2003). [CrossRef]
  17. M. Hashimoto and T. Araki, “Three-dimensional transfer functions of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. A 18, 771–776 (2001). [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, 1974).
  19. A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).
  20. M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).
  21. M. Gu and C. J. R. Sheppard, “Three-dimensional partially-coherent image formation in confocal microscopes with a finite-sized detector,” J. Mod. Opt. 41, 1701–1715 (1994). [CrossRef]
  22. C. J. R. Sheppard and M. Gu, “The three-dimensional (3-D) transmission cross-coefficient for transmission imaging,” Optik (Stuttgart) 100, 155–158 (1995).
  23. C. A. Marx, U. Harbola, and S. Mukamel, “Nonlinear optical spectroscopy of single, few, and many molecules: Nonequilibrium Green’s function QED approach,” Phys. Rev. A 77, 022110 (2008). [CrossRef]
  24. J. Squier and M. Mueller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum. 72, 2855–2867 (2001). [CrossRef]
  25. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited