Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Three-dimensional polarization states of monochromatic light fields

Not Accessible

Your library or personal account may give you access

Abstract

The 3×1 generalized Jones vectors (GJVs) [ExEyEz]t (t indicates the transpose) that describe the linear, circular, and elliptical polarization states of an arbitrary three-dimensional (3-D) monochromatic light field are determined in terms of the geometrical parameters of the 3-D vibration of the time-harmonic electric field. In three dimensions, there are as many distinct linear polarization states as there are points on the surface of a hemisphere, and the number of distinct 3-D circular polarization states equals that of all two-dimensional (2-D) polarization states on the Poincaré sphere, of which only two are circular states. The subset of 3-D polarization states that results from the superposition of three mutually orthogonal x, y, and z field components of equal amplitude is considered as a function of their relative phases. Interesting contours of equal ellipticity and equal inclination of the normal to the polarization ellipse with respect to the x axis are obtained in 2-D phase space. Finally, the 3×3 generalized Jones calculus, in which elastic scattering (e.g., by a nano-object in the near field) is characterized by the 3-D linear transformation Es=TEi, is briefly introduced. In such a matrix transformation, Ei and Es are the 3×1 GJVs of the incident and scattered waves and T is the 3×3 generalized Jones matrix of the scatterer at a given frequency and for given directions of incidence and scattering.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Components of purity of a three-dimensional polarization state

José J. Gil
J. Opt. Soc. Am. A 33(1) 40-43 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (27)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved