OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 1 — Jan. 4, 2012

Effective medium theory for random media composed of two-layered spheres

Hao Zhang, Pengfei Zhu, Yuchen Xu, Heyuan Zhu, and Min Xu  »View Author Affiliations

JOSA A, Vol. 28, Issue 11, pp. 2292-2297 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (498 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the effective index of random media composed of two-layered spheres by using the energy-density coherent potential approximation method. As expected from the Ewald–Oseen extinction theorem, in the long-wavelength limit, the optical properties of a random medium composed of two-layered spheres are identical to those of a random medium composed of the corresponding pure spheres, while in the Mie-scattering region, the single-scattering resonances lead to an overall shift of the effective refractive index with the modified volume fraction.

© 2011 Optical Society of America

OCIS Codes
(260.3160) Physical optics : Interference
(290.1990) Scattering : Diffusion
(350.5500) Other areas of optics : Propagation

ToC Category:

Original Manuscript: June 13, 2011
Revised Manuscript: September 18, 2011
Manuscript Accepted: September 20, 2011
Published: October 17, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Hao Zhang, Pengfei Zhu, Yuchen Xu, Heyuan Zhu, and Min Xu, "Effective medium theory for random media composed of two-layered spheres," J. Opt. Soc. Am. A 28, 2292-2297 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. Aegerter and G. Maret, “Coherent backscattering and Anderson localization of light,” in Progress in Optics, E.Wolf, ed. (Elsevier, 2009), Vol.  52, pp. 1–62. [CrossRef]
  2. B. A. van Tiggelen, A. Lagendijk, and D. S. Wiersma, “Reflection and transmission of waves near the localization threshold,” Phys. Rev. Lett. 84, 4333–4336 (2000). [CrossRef] [PubMed]
  3. A. L. Diederik, S. Wiersma, Paolo Bartolini, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
  4. A. Ioffe and A. Regel, “Non-crystalline, amorphous and liquid electronic semiconductors,” Prog. Semicond. 4, 237–291 (1960).
  5. M. Störzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96, 063904 (2006). [CrossRef] [PubMed]
  6. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958). [CrossRef]
  7. M. Störzer, C. M. Aegerter, and G. Maret, “Reduced transport velocity of multiply scattered light due to resonant scattering,” Phys. Rev. E 73, 065602 (2006). [CrossRef]
  8. G. Labeyrie, E. Vaujour, C. A. Müller, D. Delande, C. Miniatura, D. Wilkowski, and R. Kaiser, “Slow diffusion of light in a cold atomic cloud,” Phys. Rev. Lett. 91, 223904 (2003). [CrossRef] [PubMed]
  9. R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, A. Blanco, L. Viña, C. López, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99, 233902 (2007). [CrossRef]
  10. R. Tweer, “Vielfachstreuung von Licht in Systemen dicht gepackter Mie–Streuer: Auf dem Weg zur Anderson–Lokalisierung?” Ph.D. thesis (University of Konstanz, 2002).
  11. P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena, 2nd ed. (Springer, 2006).
  12. E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, 2007). [CrossRef]
  13. K. Busch and C. M. Soukoulis, “Transport properties of random media: a new effective medium theory,” Phys. Rev. Lett. 75, 3442–3445 (1995). [CrossRef] [PubMed]
  14. T. C. Choy, Effective Medium Theory (Oxford University Press, 1999).
  15. K. Busch, C. M. Soukoulis, and E. N. Economou, “Transport and scattering mean free paths of classical waves,” Phys. Rev. B 50, 93–98 (1994). [CrossRef]
  16. C. M. Soukoulis, S. Datta, and E. N. Economou, “Propagation of classical waves in random media,” Phys. Rev. B 49, 3800–3810(1994). [CrossRef]
  17. K. Busch and C. M. Soukoulis, “Transport properties of random media: an energy-density CPA approach,” Phys. Rev. B 54, 893–899 (1996). [CrossRef]
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley , 1998). [CrossRef]
  20. H. Zhang, H. Zhu, and M. Xu, “Transport properties of light in a disordered medium composed of two-layered dispersive spheres,” Opt. Express 19, 2928–2940 (2011). [CrossRef] [PubMed]
  21. D. E. Aspnes, “Local-field effects and effective-medium theory: a microscopic perspective,” Am. J. Phys. 50, 704–709 (1982). [CrossRef]
  22. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed. (Cambridge University Press, 1997). [PubMed]
  23. C. F. Bohren, “Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles,” J. Atmos. Sci. 43, 468–475 (1986). [CrossRef]
  24. R. G. Barrera, A. Reyes-Coronado, and A. García-Valenzuela, “Nonlocal nature of the electrodynamic response of colloidal systems,” Phys. Rev. B 75, 184202 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited