OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 1 — Jan. 4, 2012

Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor

Alejandro Calabuig, Javier Garcia, Carlos Ferreira, Zeev Zalevsky, and Vicente Micó  »View Author Affiliations


JOSA A, Vol. 28, Issue 11, pp. 2346-2358 (2011)
http://dx.doi.org/10.1364/JOSAA.28.002346


View Full Text Article

Enhanced HTML    Acrobat PDF (1570 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single-exposure superresolved interferometric microscopy (SESRIM) by RGB multiplexing has recently been proposed as a way to achieve one-dimensional superresolved imaging in digital holographic microscopy by a single-color CCD snapshot [ Opt. Lett. 36, 885 (2011)]. Here we provide the mathematical basis for the operating principle of SESRIM, while we also present a different experimental configuration where the color CCD camera is replaced by a monochrome (B&W) CCD camera. To maintain the single-exposure working principle, the object field of view (FOV) is restricted and the holographic recording is based on image-plane wavelength-dispersion spatial multiplexing to separately record the three bandpass images. Moreover, a two-dimensional extension is presented by considering two options: time multiplexing and selective angular multiplexing. And as an additional implementation, the FOV restriction is eliminated by varying the angle between the three reference beams in the interferometric recording. Experimental results are reported for all of the above-mentioned cases.

© 2011 Optical Society of America

OCIS Codes
(090.4220) Holography : Multiplex holography
(100.2000) Image processing : Digital image processing
(100.6640) Image processing : Superresolution
(180.3170) Microscopy : Interference microscopy

ToC Category:
Holography

History
Original Manuscript: July 26, 2011
Revised Manuscript: September 21, 2011
Manuscript Accepted: September 22, 2011
Published: October 26, 2011

Virtual Issues
Vol. 7, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Alejandro Calabuig, Javier Garcia, Carlos Ferreira, Zeev Zalevsky, and Vicente Micó, "Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor," J. Opt. Soc. Am. A 28, 2346-2358 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-28-11-2346


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbe, “Beitrag zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosk. Anat. 9, 413–418(1873). [CrossRef]
  2. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999).
  3. Y. Cotte, M. F. Toy, E. Shaffer, N. Pavillon, and C. Depeursinge, “Sub-Rayleigh resolution by phase imaging,” Opt. Lett. 35, 2176–2178 (2010). [CrossRef] [PubMed]
  4. Z. Zalevsky and D. Mendlovic, Optical Super Resolution(Springer, 2002).
  5. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223(1998). [CrossRef]
  6. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999). [CrossRef]
  7. F. Dubois, L. Joannes, and J.-C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Appl. Opt. 38, 7085–7094 (1999). [CrossRef]
  8. T. Colomb, F. Dürr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathé, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Appl. Opt. 44, 4461–4469 (2005). [CrossRef] [PubMed]
  9. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946(2003). [CrossRef] [PubMed]
  10. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006). [CrossRef] [PubMed]
  11. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital holography,” Opt. Express 13, 6738–6749 (2005). [CrossRef] [PubMed]
  12. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and Ch. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005). [CrossRef] [PubMed]
  13. F. Dubois, C. Yourassowsky, O. Monnom, J.-C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11, 054032 (2006). [CrossRef] [PubMed]
  14. T. Sato, M. Ueda, and G. Yamagishi, “Superresolution microscope using electrical superposition of holograms,” Appl. Opt. 13, 406–408 (1974). [CrossRef] [PubMed]
  15. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424–1426 (2003). [CrossRef] [PubMed]
  16. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589–2596 (2004). [CrossRef] [PubMed]
  17. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006). [CrossRef] [PubMed]
  18. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2006). [CrossRef] [PubMed]
  19. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168–5177 (2006). [CrossRef] [PubMed]
  20. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution using multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006). [CrossRef]
  21. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Imaging interferometric microscopy—approaching the linear systems limits of optical resolution,” Opt. Express 15, 6651–6663 (2007). [CrossRef] [PubMed]
  22. J. R. Price, P. R. Bingham, and C. E. Thomas, Jr., “Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain,” Appl. Opt. 46, 827–833 (2007). [CrossRef] [PubMed]
  23. G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46, 993–1000 (2007). [CrossRef] [PubMed]
  24. V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007). [CrossRef]
  25. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: a way to quantitative phase imaging and superresolution,” Opt. Commun. 281, 4273–4281 (2008). [CrossRef]
  26. A. Neumann, Y. Kuznetsova, and S. R. Brueck, “Structured illumination for the extension of imaging interferometric microscopy,” Opt. Express 16, 6785–6793 (2008). [CrossRef] [PubMed]
  27. V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16, 19260–19270 (2008). [CrossRef]
  28. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17, 7873–7892 (2009). [CrossRef] [PubMed]
  29. J. Bühl, H. Babovsky, A. Kiessling, and R. Kowarschik, “Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra,” Opt. Commun. 283, 3631–3638(2010). [CrossRef]
  30. V. Mico and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high resolution lensless biological imaging,” J. Biomed. Opt. 15, 046027 (2010). [CrossRef] [PubMed]
  31. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49, 845–857 (2010). [CrossRef] [PubMed]
  32. C. Yuan, G. Situ, G. Pedrini, J. Ma, and W. Osten, “Resolution improvement in digital holography by angular and polarization multiplexing,” Appl. Opt. 50, B6–B11 (2011). [CrossRef] [PubMed]
  33. M. Kim, Y. Choi, C. Fang-Yen, Y. Sung, R. R. Dasari, M. S. Feld, and W. Choi, “High-speed synthetic aperture microscopy for live cell imaging,” Opt. Lett. 36, 148–150 (2011). [CrossRef] [PubMed]
  34. A. Calabuig, V. Mico, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by RGB-multiplexing,” Opt. Lett. 36, 885–887 (2011). [CrossRef] [PubMed]
  35. H. Li, L. Zhong, Z. Ma, and X. Lu, “Joint approach of the sub-holograms in on-axis lensless Fourier phase-shifting synthetic aperture digital holography,” Opt. Commun. 284, 2268–2272(2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited