OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Middle- and long-wavelength discrimination declines with rod photopigment regeneration

Vicki J. Volbrecht, Janice L. Nerger, and Armando R. Trujillo  »View Author Affiliations

JOSA A, Vol. 28, Issue 12, pp. 2600-2606 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (397 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hue-discrimination functions were derived from hue-naming data ( 480 620 nm , 20 nm steps) obtained in 4 min intervals from 4 min to 28 min postbleach at 10 ° temporal retinal eccentricity. Hue-naming data were also obtained in the fovea. Hue-discrimination functions derived at the 4, 8, and 12 min intervals were very similar to those derived in the fovea. As time postbleach exceeded 12 min and rod sensitivity increased, the shape of the hue- discrimination functions changed. Most notably, the minimum between 560 580 nm disappeared and the just noticeable differences (JNDs) for the longer wavelength stimuli increased. The long-wavelength suppression in hue discrimination may be due to rod input in the magnocellular pathway interacting and affecting the long- wavelength sensitivity of the parvocellular pathway.

© 2011 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision
(330.5310) Vision, color, and visual optics : Vision - photoreceptors

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: May 25, 2011
Revised Manuscript: August 18, 2011
Manuscript Accepted: September 7, 2011
Published: November 18, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Vicki J. Volbrecht, Janice L. Nerger, and Armando R. Trujillo, "Middle- and long-wavelength discrimination declines with rod photopigment regeneration," J. Opt. Soc. Am. A 28, 2600-2606 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Stendler, “Die Farbenempfindlichkeit des normalen und farbebinden Auges,” Sitz. Math-Nat. Schaft. Klass 115, 39–62(1906).
  2. L. A. Jones, “The fundamental scale of the pure hue and retinal sensibility to hue differences,” J. Opt. Soc. Am. 1, 63–77 (1917). [CrossRef]
  3. H. Lauren and W. F. Hamilton, “The sensibility of the eye to differences in wave-length,” Am. J. Physiol. 65, 547–568(1923).
  4. W. D. Wright and F. H. G. Pitt, “Hue-discrimination in normal colour-vision,” Proc. Phys. Soc. London 46, 459–473 (1934). [CrossRef]
  5. R. E. Bedford and G. W. Wyszecki, “Wavelength discrimination for point sources,” J. Opt. Soc. Am. 48, 129–135 (1958). [CrossRef] [PubMed]
  6. M. Gilbert, “Colour perception in parafoveal vision,” Proc. Phys. Soc. London Sect. B 63, 83–89 (1950). [CrossRef]
  7. R. A. Weale, “Hue discrimination in para-central parts of the human retina measured at different luminance levels,” J. Physiol. 113, 115–122 (1951). [PubMed]
  8. R. A. Weale, “Spectral sensitivity and wave-length discrimination of the peripheral retina,” J. Physiol. 119, 170–190 (1953). [PubMed]
  9. U. Stabell and B. Stabell, “Color-vision mechanisms of the extrafoveal retina,” Vision Res. 24, 1969–1975 (1984). [CrossRef] [PubMed]
  10. U. Stabell and B. Stabell, “Wavelength discrimination of peripheral cones and its change with rod intrusion,” Vision Res. 17, 423–426 (1977). [CrossRef] [PubMed]
  11. J. A. van Esch, E. E. Kodenhof, A. J. van Doorn, and J. J. Koenderink, “Spectral sensitivity and wavelength discrimination of the human peripheral visual field,” J. Opt. Soc. Am. A 1, 443–450 (1984). [CrossRef] [PubMed]
  12. J. Rovamo and V. Virsu, “An estimation and application of the human cortical magnification factor,” Exp. Brain Res. 37, 495–510 (1979). [CrossRef] [PubMed]
  13. D. P. Smith, “Derivation of wavelength discrimination from colour-naming data,” Vision Res. 11, 739–742 (1971). [CrossRef] [PubMed]
  14. B. V. Graham, M. E. Turner, Jr., and D. C. Hurst, “Derivation of wavelength discrimination from color naming,” J. Opt. Soc. Am. 63, 109–111 (1973). [CrossRef] [PubMed]
  15. B. V. Graham, M. E. Turner, Jr., R. Holland, E. L. Bradley, and J. A. Burdeshaw, “Wavelength discrimination derived from color naming,” Vision Res. 16, 559–562 (1976). [CrossRef] [PubMed]
  16. I. Abramov, J. Gordon, and H. Chan, “Using hue scaling to specify color appearance and to derive color differences,” Proc. SPIE 1250, 40–51 (1990). [CrossRef]
  17. H. Chan, I. Abramov, and J. Gordon, “Large and small color difference: Predicting them from hue scaling,” Proc. SPIE 1453, 381–389 (1991). [CrossRef]
  18. J. L. Nerger, V. J. Volbrecht, and K. A. Haase, “The influence of rods on colour naming during dark adaptation,” in Normal and Defective Colour Vision, J.D.Mollon, J.Pokorny, and K.Knoblauch, eds. (Oxford University Press, 2003), pp. 173–178. [CrossRef]
  19. V. J. Volbrecht, J. L. Nerger, L. S. Baker, A. R. Trujillo, and K. Youngpeter, “Unique hue loci differ with methodology,” Ophthalmic Physiol. Opt. 30, 545–552 (2010). [CrossRef] [PubMed]
  20. I. Abramov, J. Gordon, and H. Chan, “Color appearance: Properties of the uniform appearance diagram derived from hue and saturation scaling,” Atten. Percept. Psychophys. 71, 632–643(2009). [CrossRef] [PubMed]
  21. L. J. Troup, M. A. Pitts, V. J. Volbrecht, and J. L. Nerger, “Effect of stimulus intensity on the sizes of chromatic perceptive fields,” J. Opt. Soc. Am. A 22, 2137–2142 (2005). [CrossRef]
  22. M. A. Pitts, L. J. Troup, V. J. Volbrecht, and J. L. Nerger, “Chromatic perceptive field sizes change with retinal illuminance,” J. Vision 5, 435–443 (2005) [CrossRef]
  23. V. J. Volbrecht, C. L. Clark, J. L. Nerger, and C. E. Randell, “Chromatic perceptive field sizes measured at 10° along the horizontal and vertical meridians,” J. Opt. Soc. Am. A 26, 1167–1177 (2009). [CrossRef]
  24. D. Jameson and L. M. Hurvich, “Fixation-light bias: An unwanted by-product of fixation control,” Vision Res. 7, 805–809 (1967). [CrossRef] [PubMed]
  25. M. Alpern, “Rhodopsin kinetics in the human eye,” J. Physiol. 217, 447–471. [PubMed]
  26. W. A. H. Rushton and D. Spitzer Powell, “The rhodopsin content and the visual threshold of human rods,” Vision Res. 12, 1073–1081 (1972). [CrossRef] [PubMed]
  27. J. Gordon, I. Abramov, and H. Chan, “Describing color appearance: Hue and saturation scaling,” Percept. Psychophys. 56, 27–41 (1994). [CrossRef] [PubMed]
  28. L. C. Thomson and P. Trezona, “The variations of hue discrimination with change of luminance level,” J. Physiol. 114, 98–106(1951). [PubMed]
  29. I. Abramov, J. Gordon, and H. Chan, “Color appearance in the peripheral retina: effects of stimulus size,” J. Opt. Soc. Am. A 8, 404–414 (1991). [CrossRef] [PubMed]
  30. J. Birch and W. D. Wright, “Colour discrimination,” Phys. Med. Biol. 6, 3–24 (1961). [CrossRef]
  31. K. A. Jameson, S. M. Highnote, and L. M. Wasserman, “Richer color experience in observers with multiple opsin genes,” Psychon. Bull. Rev. 8, 244–261 (2001). [CrossRef] [PubMed]
  32. B. Stabell and U. Stabell, “Peripheral colour vision: Effects of rod intrusion at different eccentricities,” Vision Res. 36, 3407–3414 (1996). [CrossRef] [PubMed]
  33. R. L. DeValois, I. Abramov, and W. R. Mead, “Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque,” J. Neurophysiol. 30, 415–433 (1967).
  34. H. v. Helmholtz, Treatise on Physiological Optics, Vol.  II, J.P. C.Southall, trans. (Dover, 1962); originally published in 1866.
  35. J. H. Nelson, “Anomalous trichromatism and its relation to normal trichromatism,” Proc. Phys. Soc. London 50, 661–702(1938). [CrossRef]
  36. N. J. Coletta and A. J. Adams, “Rod-cone interaction in flicker detection,” Vision Res. 24, 1333–1340 (1984). [CrossRef] [PubMed]
  37. S. H. Goldberg, T. E. Frumkes, and R. W. Nygaard, “Inhibitory influence of unstimulated rods in the human retina: Evidence provided by examining cone flicker,” Science 221, 180–182(1983). [CrossRef] [PubMed]
  38. F. Naarendorp, N. Denny, and T. E. Frumkes, “Rod light and dark adaptation influence cone-mediated spatial acuity,” Vision Res. 28, 67–74 (1988). [PubMed]
  39. G. Lange, N. Denny, and T. E. Frumkes, “Suppressive rod-cone interactions: Evidence for separate retinal (temporal) and extraretinal (spatial) mechanisms in achromatic vision,” J. Opt. Soc. Am. A 14, 2487–2498 (1997). [CrossRef]
  40. M. Gur, “The physiological basis of wavelength discrimination: Evidence from dichoptic and Ganzfeld viewing,” Vision Res. 26, 1257–1262 (1986). [CrossRef] [PubMed]
  41. V. Virsu and B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–878 (1983). [PubMed]
  42. V. Virsu, B. B. Lee, and D. Creutzfeld, “Mesopic spectral responses and the Purkingje shift of macaque lateral geniculate nucleus cells,” Vision Res. 27, 191–200(1987). [CrossRef]
  43. K. Purpura, E. Kaplan, and R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. U.S.A. 85, 4534–4537 (1988). [CrossRef] [PubMed]
  44. B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rod inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828(1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited