OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 3 — Mar. 18, 2011

Radiative flux from a multiple-point bioluminescent or chemiluminescent source within a cylindrical reactor incident on a planar-circular coaxial detector. I. Arbitrary radiation field

Stanislaw Tryka  »View Author Affiliations

JOSA A, Vol. 28, Issue 2, pp. 126-135 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (574 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In a quantitative description of bioluminescence (BL) and chemiluminescence (CL) phenomena, it is indispensable to know the total fluxes of radiation emitted by the sources studied. Such knowledge is necessary for determining the quantum yields of the examined BL and CL reactions, for comparing the data measured by different optical radiometers (luminometers), and for expressing the power of the emitted radiation in absolute units, i.e., in watts or as a number of photons per specified time period. This paper presents an integral formula for calculating radiative fluxes incident on a planar-circular detector from a volume multiple-point BL or CL source partially or completely filling an open coaxial cylindrical reactor. The formula represents the solution to the basic radiometric equation applied to the point emitters embedded within a homogeneous substrate separated from the detector by a different optical homogeneous isotropic medium. All calculations were performed for a nontransparent cylindrical reactor when the surface reflections were neglected and when optical radiation was incident on the detector through an open end of the cylindrical reactor. No additional restrictions were made with respect to the spatial distribution of the point emitters and angular distribution of the emitted radiations, so that the formula is applicable for arbitrarily distributed and arbitrarily radiating point emitters composing a BL or CL source.

© 2011 Optical Society of America

OCIS Codes
(080.1510) Geometric optics : Propagation methods
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(260.1560) Physical optics : Chemiluminescence
(260.2160) Physical optics : Energy transfer
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(080.4295) Geometric optics : Nonimaging optical systems

ToC Category:
Physical Optics

Original Manuscript: July 7, 2010
Revised Manuscript: November 17, 2010
Manuscript Accepted: November 18, 2010
Published: January 11, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Stanislaw Tryka, "Radiative flux from a multiple-point bioluminescent or chemiluminescent source within a cylindrical reactor incident on a planar-circular coaxial detector. I. Arbitrary radiation field," J. Opt. Soc. Am. A 28, 126-135 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Lee and H. H. Seliger, “Absolute spectral sensitivity of phototubes and the application of the measurement of the absolute quantum yields of chemiluminescence and bioluminescence,” Photochem. Photobiol. 4, 1015–1048 (1965). [CrossRef]
  2. J. P. Hamman, W. H. Biggley, and H. H. Seliger, “Emission spectrum of the microsomal chemiluminescence of a proximate carcinogen, 7,8-diol-benzo[a]pyrene, determined with a wedge interference filter spectrometer,” Photochem. Photobiol. 30, 519–524 (1979). [CrossRef]
  3. E. S. Rich Jr., C. H. Groover, and J. E. Wampler, “The spatial distribution of light emission from liquid phase bio- and chemiluminescence: variations with container types, turbidity and container frosting,” Photochem. Photobiol. 33, 727–736(1981). [CrossRef]
  4. D. Slawinska and J. Slawinski, “Applications of bioluminescence and low-level luminescence from biological objects,” in Chemi- and Bioluminescence, J.G.Burr, ed. (Marcel Dekker, 1985), pp. 533–601.
  5. A. W. Knight, “A review of recent trends in analytical applications of electrogenerated chemiluminescence,” Trends Anal. Chem. 18, 47–62 (1999). [CrossRef]
  6. S. Kulmala and J. Suomi, “Current states of modern luminescence methods,” Anal. Chim. Acta 500, 21–69(2003). [CrossRef]
  7. A. Roda, M. Guardigli, E. Michelini, M. Mirasoli, and P. Pasini, “Analytical bioluminescence and chemiluminescence,” Anal. Chem. 75, 462A–70A (2003). [CrossRef]
  8. Y. Shimizu, H. Inaba, K. Kumaki, K. Mizuno, S. I. Hata, and S. Tomioka, “Measuring methods for ultra-low light intensity and their application to extra-weak spontaneous bioluminescence from living tissues,” IEEE Trans. Instrum. Meas. 22, 153–57 (1973). [CrossRef]
  9. H. Inaba, Y. Shimizu, Y. Tsuji, and A. Yamagishi, “Photon counting spectral analyzing system of extra-weak chemi- and bioluminescence for biochemical applications,” Photochem. Photobiol. 30, 169–175 (1979). [CrossRef]
  10. J. E. Wampler, “Instrumentation: seeing the light and measuring it,” in Chemi- and Bioluminescence, J.G.Burr, ed. (Marcel Dekker, 1985), pp. 1–44.
  11. H. Inaba, “Super-high sensitivity systems for detection and spectral analysis of ultraweak photon emission from biological cells and tissues,” Experientia 44, 550–559(1988). [CrossRef]
  12. C. R. Batishko, K. A. Stahl, D. N. Erwin, and J. Kiel, “A quantitative luminescence imaging system for biochemical diagnostics,” Rev. Sci. Instrum. 61, 2289–2295 (1990). [CrossRef]
  13. F. Berthold, “Instrumentation for chemiluminescence immunoassays,” in Luminescence Immunoassay and Molecular Applications, K.Van Dyke and R.Van Dyke, eds. (CRC Press, 1990), pp. 11–25.
  14. W. Mueller-Klieser and S. Walenta, “Geographical mapping of metabolites in biological tissue with quantitative bioluminescence single photon imaging,” Histochem. J. 25, 407–420(1993). [CrossRef]
  15. O. Hofmann, P. Miller, P. Sullivan, T. S. Jones, J. C. deMello, D. D. C. Bradley, and A. J. deMello, “Thin-film organic photodiodes as integrated detectors for microscale chemiluminescence assays,” Sens. Actuators B 106, 878–884(2005).
  16. E. L’Hostis, Ph. E. Michel, G. C. Fiaccabrino, D. J. Strike, N. F. de Rooij, and M. Koudelka-Hep, “Microreactor and electrochemical detectors fabricated using Si and EPON SU-8,” Sens. Actuators B 64, 156–162 (2000).
  17. N. A. Marley, J. S. Gaffney, R. V. White, L. Rodriguez-Cuadra, S. E. Herndon, E. Dunlea, R. M. Volkamer, L. T. Molina, and M. J. Molina, “Fast gas chromatography with luminol chemiluminescence detection for the simultaneous determination of nitrogen dioxide and peroxyacetyl nitrate in the atmosphere,” Rev. Sci. Instrum. 75, 4595–4605 (2004). [CrossRef]
  18. R. H. Kingston, Optical Sources, Detector, and Systems: Fundaments and Applications (Academic, 1995).
  19. J. W. Hastings and G. Weber, “Total quantum flux of isotropic sources,” J. Opt. Soc. Am. 53, 1410–1415(1963). [CrossRef]
  20. A. Fontijn and J. Lee, “Comparison of the quantum yields of the gas-phase O/NO reaction and the liquid-phase luminol oxidation chemiluminescence intensity standards,” J. Opt. Soc. Am. 62, 1095–1098 (1972). [CrossRef]
  21. H. S. Moran, “Determination of the relative spectral sensitivity of phototubes,” J. Opt. Soc. Am. 45, 12–14 (1955). [CrossRef]
  22. R. I. Christensen and I. Ames, “Absolute calibration of light detector,” J. Opt. Soc. Am. 51, 224–236 (1961). [CrossRef]
  23. A. N. Fletcher and C. A. Heller, “Oxidation and chemiluminescence of tetrakis(dimethylamino)ethylene. III. Kinetics, quantum yield, and mechanism of luminescence,” J. Phys. Chem. 71, 1507–1518 (1967). [CrossRef]
  24. S. Tryka, “Radiative flux from a planar multiple point source within a cylindrical enclosure reaching a coaxial circular plane,” Opt. Express 15, 3777–3790 (2007). [CrossRef]
  25. S. Tryka, “A planar-circular detector based on multiple point chemi- or bio-luminescent source within coaxial cylindrical reactor,” J. Quant. Spectrosc. Radiat. Transfer 110, 1864–1878(2009). [CrossRef]
  26. S. Tryka, “Optical radiation flux illuminating a circular disk from an off-axis point source through two different homogeneous refractive media,” Opt. Commun. 211, 15–30 (2002). [CrossRef]
  27. F. Grum and R. J. Becherer, Radiometry (Academic, 1979), Chap. 3.
  28. M. Strojnik and G. Paez, “Radiometry,” in Handbook of Optical Engineering, D.Malacara and B.J.Thompson, eds., (Marcel Dekker, 2001), pp. 649–699.
  29. P. Bouguer, Essai d’Optique sur la Gradation de la Lumière (Chez Claude Jombert, 1729).
  30. J. H. Lambert, Photometria Sive de Mensura et Gradibus Luminis Colorum et Umbrae (Eberhard Klett, 1760) [E. Anding, Lambert’s Photometrie (Verlag von Wilhelm Engelmann, 1892) (in Russian)].
  31. M. Born and E. Wolf, Principles of Optics (Pergamon, 1959), Chap. 1.
  32. URL:http://www.lambdares.com/education/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited