OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 4 — May. 4, 2011

Correction of optical phase aberrations using binary-amplitude modulation

Tom Vettenburg and Andy R. Harvey  »View Author Affiliations


JOSA A, Vol. 28, Issue 3, pp. 429-433 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000429


View Full Text Article

Enhanced HTML    Acrobat PDF (461 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that phase aberrations in an imaging system can be mitigated using binary-amplitude masks that reduce destructive interference in the image spatial frequency domain. Appropriately designed masks increase the magnitude of the optical transfer function and prevent nulls. This offers a low-cost, transmission-mode alternative to phase correction as used in active and adaptive optics, without a restriction on the waveband of operation.

© 2011 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(110.0110) Imaging systems : Imaging systems
(110.0115) Imaging systems : Imaging through turbulent media
(110.1758) Imaging systems : Computational imaging
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: October 27, 2010
Revised Manuscript: December 22, 2010
Manuscript Accepted: December 25, 2010
Published: February 25, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Tom Vettenburg and Andy R. Harvey, "Correction of optical phase aberrations using binary-amplitude modulation," J. Opt. Soc. Am. A 28, 429-433 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-28-3-429


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Hofer, L. Chen, G.-Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, “Improvement in retinal image quality with dynamic correction of the eye’s aberrations,” Opt. Express 8, 631–643(2001). [CrossRef] [PubMed]
  2. E. J. Fernández, I. Iglesias, and P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001). [CrossRef]
  3. C. Paterson, I. Munro, and J. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175–185(2000). [CrossRef] [PubMed]
  4. S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, and G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–28 (1992). [CrossRef]
  5. K. H. Lee, J. Chang, and J. B. Yoon, “High performance microshutter device with space-division modulation,” J. Micromech. Microeng. 20, 075030 (2010). [CrossRef]
  6. S. Goodwin, B. R. Stoner, J. Carlson, and S. Rogers, “Artificial eyelid dynamic aperture optical arrays for large scale coding elements with application in the visible to MWIR,” Proc. SPIE 7096, 70960E (2008). [CrossRef]
  7. A. S. Kutyrev, R. Arendt, S. H. Moseley, R. A. Boucarut, T. Hadjimichael, M. Jhabvala, T. King, M. J. Li, J. Loughlin, D. Rapchun, D. S. Schwinger, and R. F. Silverberg, “Programmable microshutter arrays for the JWST NIRSpec: optical performance,” IEEE J. Sel. Top. Quantum Electron. 10, 652–661(2004). [CrossRef]
  8. M. E. McNie, D. O. King, N. Price, D. J. Combes, G. W. Smith, A. G. Brown, N. T. Gordon, S. M. Stone, K. M. Brunson, K. L. Lewis, C. W. Slinger, and S. Rogers, “A large area reconfigurable MOEMS microshutter array for coded aperture imaging systems,” Proc. SPIE 7096, 70960D (2008). [CrossRef]
  9. G. D. Love, N. Andrews, P. Birch, D. Buscher, P. Doel, C. Dunlop, J. Major, R. Myers, A. Purvis, R. Sharples, A. Vick, A. Zadrozny, S. R. Restaino, and A. Glindemann, “Binary adaptive optics: atmospheric wave-front correction with a half-wave phase shifter,” Appl. Opt. 34, 6058–6066 (1995). [CrossRef] [PubMed]
  10. P. M. Birch, J. Gourlay, G. D. Love, and A. Purvis, “Real-time optical aberration correction with a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 37, 2164–2169(1998). [CrossRef]
  11. J. Osborn, R. M. Myers, and G. D. Love, “PSF halo reduction in adaptive optics using dynamic pupil masking,” Opt. Express 17, 17279–17292 (2009). [CrossRef] [PubMed]
  12. J. W. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  13. G. Muyo and A. R. Harvey, “Decomposition of the optical transfer function: wavefront coding imaging systems,” Opt. Lett. 30, 2715–2717 (2005). [CrossRef] [PubMed]
  14. A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis (Dover, 1975).
  15. J. W. Stayman, N. Subotic, and W. Buller, “An analysis of coded aperture acquisition and reconstruction using multi-frame code sequences for relaxed optical design constraints,” Proc. SPIE 7468, 74680D (2009). [CrossRef]
  16. T. Vettenburg, N. Bustin, and A. R. Harvey, “Fidelity optimization for aberration-tolerant hybrid imaging systems,” Opt. Express 18, 9220–9228 (2010). [CrossRef] [PubMed]
  17. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997). [CrossRef]
  18. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001). [CrossRef]
  19. A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17, 1697–1702 (2000). [CrossRef]
  20. C. Torti, S. Gruppetta, and L. Diaz-santana, “Wavefront curvature sensing for the human eye,” J. Modern Opt. 55, 691–702 (2008). [CrossRef]
  21. A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging,” Opt. Express 18, 5602–5608 (2010). [CrossRef] [PubMed]
  22. R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64, 1200–1210 (1974). [CrossRef]
  23. A. Buffington, F. S. Crawford, R. A. Muller, A. J. Schwemin, and R. G. Smits, “Correction of atmospheric distortion with an image-sharpening telescope,” J. Opt. Soc. Am. 67, 298–303(1977). [CrossRef]
  24. D. Débarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15, 8176–8190 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited