OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 4 — May. 4, 2011

Morphological rational operator for contrast enhancement

Hayde Peregrina-Barreto, Ana M. Herrera-Navarro, Luis A. Morales-Hernández, and Iván R. Terol-Villalobos  »View Author Affiliations


JOSA A, Vol. 28, Issue 3, pp. 455-464 (2011)
http://dx.doi.org/10.1364/JOSAA.28.000455


View Full Text Article

Enhanced HTML    Acrobat PDF (1211 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Contrast enhancement is an important task in image processing that is commonly used as a preprocessing step to improve the images for other tasks such as segmentation. However, some methods for contrast improvement that work well in low-contrast regions affect good contrast regions as well. This occurs due to the fact that some elements may vanish. A method focused on images with different luminance conditions is introduced in the present work. The proposed method is based on morphological transformations by reconstruction and rational operations, which, altogether, allow a more accurate contrast enhancement resulting in regions that are in harmony with their environment. Furthermore, due to the properties of these morphological transformations, the creation of new elements on the image is avoided. The processing is carried out on luminance values in the u v Y color space, which avoids the creation of new colors. As a result of the previous considerations, the proposed method keeps the natural color appearance of the image.

© 2011 Optical Society of America

OCIS Codes
(100.2980) Image processing : Image enhancement
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics

ToC Category:
Image Processing

History
Original Manuscript: August 4, 2010
Revised Manuscript: January 17, 2011
Manuscript Accepted: January 18, 2011
Published: February 28, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Hayde Peregrina-Barreto, Ana M. Herrera-Navarro, Luis A. Morales-Hernández, and Iván R. Terol-Villalobos, "Morphological rational operator for contrast enhancement," J. Opt. Soc. Am. A 28, 455-464 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-28-3-455


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. P. Kramer and J. B. Bruckner, “Iteration of non-linear transformation for enhancement of digital image,” Pattern Recogn. 7, 53–58 (1975). [CrossRef]
  2. J. Serra, “Toggle mappings,” Tech. Rep. N-18/88/MM (Centre de Morphologie Matematique, ENSMP, 1988).
  3. F. Meyer and J. Serra, “Activity mappings,” Signal Process. 16, 303–317 (1989). [CrossRef]
  4. A. Toet, “Multi-scale contrast enhancement with applications to image fusion,” Opt. Eng. 31, 1026–1031 (1992). [CrossRef]
  5. I. R. Terol-Villalobos, “Morphological slope filters,” Proc. SPIE 2588, 712–722 (1995).
  6. I. R. Terol-Villalobos, “Non-increasing filters using morphological gradient criteria,” Opt. Eng. 35, 3172–3182 (1996). [CrossRef]
  7. S. Mukhopadhyay and B. Chanda, “A multiscale morphological approach to local contrast enhancement,” Signal Process. 80, 685–696 (2000). [CrossRef]
  8. J. D. Mendiola-Santibañez and I. R. Terol-Vilallobos, “Mapeos de contraste morfológicos sobre particiones basados en la noción de zona plana,” Comput. Sist. 6, 25–37 (2002).
  9. J. D. Mendiola-Santibañez and I. R. Terol-Vilallobos, “Quantifying contrast methods through morphological gradient,” Comput. Sist. 8, 317–333 (2005).
  10. M. Espino-Gudiño, I. Santillãn, and I. R. Terol-Villalobos, “Morphological multiscale contrast approach for gray and color images consistent with visual perception,” Opt. Eng. 46, 067003 (2007). [CrossRef]
  11. J. Serra, Image Analysis and Mathematical Morphology(Academic, 1982).
  12. P. Soille, Morphological Image Analysis: Principles and Applications (Springer-Verlag, 2003).
  13. P. Soille, E. J. Breen, and R. Jones, “Recursive implementation of erosions and dilations along discrete lines at arbitrary angles,” IEEE Trans. Pattern Anal. Mach. Intell. 18, 562–567 (1996). [CrossRef]
  14. E. R. Urbach and M. H. F. Wilkinson, “Efficient 2-D grayscale morphological transformations with arbitrary flat structuring elements,” IEEE Trans. Image Process. 17, 1–8 (2008). [CrossRef]
  15. L. Vincent, “Current topics in applied morphological image analysis” in Current Trends in Stochastics Geometry and its Applications, W. S. Kendall, O. E. Barndorff-Nielsen, and M. C. van Lieshout, eds. (Chapman & Hall, 1997).
  16. C. Lantuéjoul and F. Maisonneuve, “Geodesic methods in quantitative image analysis,” Pattern Recogn. 17, 177–187 (1984). [CrossRef]
  17. E. Land and J. J. McCann, “Lightness and Retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971). [CrossRef]
  18. E. Land, “Recent advances in Retinex theory,” Vis. Res. 26, 7–21 (1986). [CrossRef]
  19. A. Rizzi, C. Gatta, and D. Marini, “From Retinex to automatic color equalization: issues in developing a new algorithm for unsupervised color equalization,” Electron. Imag. 13, 75–84(2004). [CrossRef]
  20. Z. Rahman, D. J. Jobson, and G. A. Woodell, “Retinex processing for automatic image enhancement,” Electron. Imag. 13, 100–110 (2004). [CrossRef]
  21. D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multiscale Retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process. 6, 965–976 (1997). [CrossRef]
  22. K. Barnard and B. Funt, “Investigations into multi-scale retinex (MSR),” in Colour Imaging: Vision and Technology, L.W.Macdonald and M.R.Luo, eds. (Wiley, 1999), pp. 17–36.
  23. M. D. Fairchild, Color Appearance Models (Wiley, 2005).
  24. S. Süsstrunk, J. Holm, and G. D. Finlayson, “Chromatic adaptation performance of different RGB sensors,” Proc. SPIE 4300, 172–183 (2001).
  25. A. R. Smith, “Color gamut transform pairs,” ACM SIGGRAPH Comput. Graph. 12 (3), 12–19 (1978).
  26. R. C. González and R. E. Woods, Digital Image Processing(Prentice-Hall, 1992).
  27. H. Levkowitz and G. T. Herman, “GLHS: a generalized lightness, hue and saturation color models,” CVGIP Graph. Models Image Process. 55, 271–285 (1993). [CrossRef]
  28. A. Hanbury and J. Serra, “Mathematical morphology in CIELAB space,” Image Anal. Stereol. 21, 201–206 (2002).
  29. S. C. Pei, Y. C. Zeng, and C. H. Chang, “Virtual restoration of ancient Chinese paintings using color contrast enhancement and lacuna texture synthesis,” IEEE Trans. Image Process. 13, 416–429 (2004). [CrossRef]
  30. L. Lucchese and S. K. Mitra, “A new class of chromatic filters for color image processing. Theory and applications,” IEEE Trans. Image Process. 13, 534–548 (2004). [CrossRef]
  31. D. Ruderman, T. W. Croning, and C. C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998). [CrossRef]
  32. E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color transfer between images,” IEEE Comput. Graph. Appl. 21, 34–41 (2001). [CrossRef]
  33. R. G. Kogan, S. Agaian, and K. P. Lentz, “Visualization using rational morphology and magnitude reduction,” Proc. SPIE 3387, 301–312 (1998).
  34. E. H. Weber, De Pulsu, Resorptione, Audita et Tactu. Annotationes Anatomicae et Physiologicae. Koehler, Leipzig, translated by H. E. Ross (Academic, 1978).
  35. G. Matheron, Eléments pour une Théorie des Milieux Poreux (Masson, 1967).
  36. P. Maragos and R. D. Ziff, “Threshold superposition in morphological image analysis systems,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 498–504 (1990). [CrossRef]
  37. G. Matheron, Random Sets and Integral Geometry (Wiley, 1975).
  38. F. Dornaika and H. Zhang, “Granulometry using mathematical morphology and motion,” in Proceedings of IAPR Workshop on Machine Vision Applications (Springer-Verlag, 2000), pp. 51–54.
  39. L. Vincent, “Granulometries and opening trees,” Fundam. Informatic. 41, 57–90 (2000).
  40. E. R. Urbach, J. B. T. M. Roerdink, and M. H. F. Wilkinson, “Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 272–285 (2007). [CrossRef]
  41. P. Maragos, “Pattern spectrum and multiscale shape representation,” IEEE Trans. Pattern Anal. Mach. Intell. 11, 701–716(1989). [CrossRef]
  42. E. J. Breen and R. Jones, “Attribute openings, thinnings and granulometries,” Comput. Vis. Image Underst. 64, 377–389 (1996). [CrossRef]
  43. G. K. Ouzounis, “Generalized connected morphological operators for robust shape extraction,” Ph. D. thesis (University of Groningen, 2009).
  44. G. K. Ouzounis and M. H. F. Wilkinson, “Mask-based second generation connectivity and attribute filters,” IEEE Trans. Pattern Anal. Mach. Intell. 29, 990–1004 (2007). [CrossRef]
  45. M. H. F. Wilkinson, “Attribute-space connectivity and connected filters,” Image Vis. Comput. 25, 426–435 (2007). [CrossRef]
  46. G. K. Ouzounis, and M. H. F. Wilkinson, “Hyperconnected attribute filters based on k-flat zones,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 224–239 (2011). [CrossRef]
  47. P. Salembier, A. Oliveras, and L. Garrido, “Anti-extensive connected operators for image and sequence processing,” IEEE Trans. Image Process. 7, 555–570 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited