OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 7 — Jul. 27, 2011

Mie scattering in the time domain. Part II. The role of diffraction

James A. Lock and Philip Laven  »View Author Affiliations


JOSA A, Vol. 28, Issue 6, pp. 1096-1106 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001096


View Full Text Article

Enhanced HTML    Acrobat PDF (816 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The p = 0 term of the Mie–Debye scattering amplitude contains the effects of external reflection and diffraction. We computed the reflected intensity in the time domain as a function of the scattering angle and delay time for a short electromagnetic pulse incident on a spherical particle and compared it to the predicted behavior in the forward-focusing region, the specular reflection region, and the glory region. We examined the physical consequences of three different approaches to the exact diffraction amplitude, and determined the signature of diffraction in the time domain. The external reflection surface wave amplitude gradually replaces the diffraction amplitude in the angular transition region between forward-focusing and the region of specular reflection. The details of this replacement were studied in the time domain.

© 2011 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(290.4020) Scattering : Mie theory
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Scattering

History
Original Manuscript: February 15, 2011
Manuscript Accepted: March 16, 2011
Published: May 18, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
James A. Lock and Philip Laven, "Mie scattering in the time domain. Part II. The role of diffraction," J. Opt. Soc. Am. A 28, 1096-1106 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-28-6-1096


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Halliday, R. Resnick, and J. Walker, “Diffraction,” in Fundamentals of Physics, 7th ed. (Wiley, 2005), p. 963.
  2. E. Hecht, “Huygens principle,” in Optics, 2nd ed. (Addison-Wesley, 1987), p. 80.
  3. J. W. Goodman, “The Kirchhoff formula of diffraction by a plane screen,” in Introduction to Fourier Optics (McGraw-Hill, 1968), pp. 37–42.
  4. M. Born and E. Wolf, “Two-dimensional diffraction of a plane wave by a half-plane,” in Principles of Optics, 6th ed.(Cambridge University, 1980), pp. 565–578.
  5. M. Born and E. Wolf, “The nature of the solution,” in Principles of Optics, 6th ed. (Cambridge University, 1980), p. 571.
  6. M. Born and E. Wolf, “The nature of the solution,” in Principles of Optics, 6th ed. (Cambridge University, 1980), p. 572.
  7. M. Born and E. Wolf, “Expression of the solution in ters of Fresnel integrals,” in Principles of Optics, 6th ed. (Cambridge University, 1980), p. 569.
  8. H. C. van de Hulst, “Rigorous scattering theory for spheres of arbitrary size,” in Light Scattering by Small Particles (Dover, 1957), pp. 114–130.
  9. M. Kerker, “Scattering by a sphere,” in The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969), pp. 27–96.
  10. C. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 82–129.
  11. B. Van der Pol and H. Bremmer, “The diffraction of electromagnetic waves from an electrical point source round a finitely conducting sphere, with applications to radiotelegraphy and the theory of the rainbow,” Philos. Mag. 24, 825–864 (1937).
  12. H. C. van de Hulst, “The diffraction part,” in Light Scattering by Small Particles (Dover, 1957), p. 209.
  13. H. M. Nussenzveig, “Uniform approximation in scattering by spheres,” J. Phys. A 21, 81–109 (1988), Section 4.2. [CrossRef]
  14. J. A. Lock and E. A. Hovenac, “Diffraction of a Gaussian beam by a spherical obstacle,” Am. J. Phys. 61, 698–707 (1993). [CrossRef]
  15. H. M. Nussenzveig, “The Debye expansion,” in Diffraction Effects in Semiclassical Scattering (Cambridge University, 1992), p. 96.
  16. E. P. Wigner, “Lower limit for the energy derivative of the scattered phase shift,” Phys. Rev. 98, 145–147 (1955). [CrossRef]
  17. H. M. Nussenzveig, “High-frequency scattering by an impenetrable sphere,” Ann. Phys. 34, 23–95 (1965). [CrossRef]
  18. H. M. Nussenzveig, “High-frequency scattering by a transparent sphere. I. Direct reflection and transmission,” J. Math. Phys. 10, 82–124 (1969). [CrossRef]
  19. V. Khare, “Short-wavelength scattering of electromagnetic waves by a homogeneous dielectric sphere,” Ph.D. dissertation (University of Rochester, 1976), pp. 89–109.
  20. M.Abramowitz and I.A.Stegun, eds., Handbook of Mathematical Functions (National Bureau of Standards, 1964), p. 366 Eq. (9.3.4), p. 448 Eq. (10.4.59), p. 449 Eq. (10.4.63).
  21. M.Abramowitz and I.A.Stegun, eds., Handbook of Mathematical Functions (National Bureau of Standards, 1964), p. 366 Eq. (9.3.4), p. 448 Eq. (10.4.60), p. 449 Eq. (10.4.64).
  22. M.Abramowitz and I.A.Stegun, eds., Handbook of Mathematical Functions (National Bureau of Standards, 1964), p. 366 Eq. (9.3.3).
  23. H. C. van de Hulst, “The reflected and refracted light,” in Light Scattering by Small Particles (Dover, 1957), p. 212.
  24. K. W. Ford and J. A. Wheeler, “Semiclassical description of scattering,” Ann. Phys. 7, 259–286 (1959). [CrossRef]
  25. D. Q. Chowdhury, S. C. Hill, and P. W. Barber, “Time dependence of internal intensity of a dielectric sphere on or near resonance,” J. Opt. Soc. Am. A 9, 1364–1373 (1992). [CrossRef]
  26. E. E. M. Khaled, D. Q. Chowdhury, S. C. Hill, and P. W. Barber, “Internal and scattered time-dependent intensity of a dielectric sphere illuminated with a pulsed Gaussian beam,” J. Opt. Soc. Am. A 11, 2065–2071 (1994). [CrossRef]
  27. K. S. Shifrin and I. G. Zolotov, “Quasi-stationary scattering of electromagnetic pulses by spherical particles,” Appl. Opt. 33, 7798–7804 (1994). [CrossRef] [PubMed]
  28. P. Laven, “Separating diffraction from scattering: the million-dollar challenge,” J. Nanophoton. 4, 041593 (2010). [CrossRef]
  29. J. A. Lock and P. Laven, “Mie scattering in the time domain. Part I. The role of surface waves,” J. Opt. Soc. Am. A 28, 1086–1095 (2011). [CrossRef]
  30. J. A. Lock, “Observability of atmospheric glories and supernumerary rainbows,” J. Opt. Soc. Am. A 6, 1924–1930(1989). [CrossRef]
  31. M.Abramowitz and I.A.Stegun, eds., “Bessel functions of fractional order,” in Handbook of Mathematical Functions(National Bureau of Standards, 1964), p. 478, Table 10.13.
  32. H. C. van de Hulst, “Theory based on Mie’s formulae,” in Light Scattering by Small Particles (Dover, 1957), p. 253.
  33. G. Arfken, “Recurrence relations and special properties,” in Mathematical Methods for Physicists, 3rd. ed. (Academic, 1985), p. 648 Eq. (12.28).
  34. J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, “Legendre functions,” in Electromagnetic and Acoustic Scattering by Simple Shapes (Hemisphere, 1969), p. 76 Eqs. (1.367, 1.369).
  35. H. M. Nussenzveig and W. J. Wiscombe, “Complex angular momentum approximation to hard-core scattering,” Phys. Rev. A 43, 2093–2112 (1991). [CrossRef] [PubMed]
  36. J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi, “Legendre functions,” in Electromagnetic and Acoustic Scattering by Simple Shapes (Hemisphere, 1969), p. 72 Eq. (1.335).
  37. G. Arfken, “Asymptotic expansions,” in Mathematical Methods for Physicists, 3rd ed. (Academic, 1985), p. 620 Eq. (11.137).
  38. J. B. Keller, “A geometrical theory of diffraction,” in Calculus of Variations and Its Applications, Proceedings of Symposia in Applied Mathematics, L.M.Graves, ed. McGraw-Hill, 1958), Vol.  3, pp. 27–52.
  39. J. B. Keller, “Diffraction by an aperture,” J. Appl. Phys. 28, 426–444 (1957). [CrossRef]
  40. P. M. Morse and H. Feshbach, “Poisson sum formula,” in Methods of Theoretical Physics (McGraw-Hill, 1953), pp. 466–467.
  41. E. Hecht, “Babinet’s principle,” in Optics, 2nd ed. (Addison-Wesley, 1987), pp. 458–459.
  42. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited