OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 7 — Jul. 27, 2011

Image reconstruction in photoacoustic tomography involving layered acoustic media

Robert W. Schoonover and Mark A. Anastasio  »View Author Affiliations


JOSA A, Vol. 28, Issue 6, pp. 1114-1120 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001114


View Full Text Article

Enhanced HTML    Acrobat PDF (653 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoacoustic tomography (PAT), also known as thermoacoustic or optoacoustic tomography, is a rapidly emerg ing biomedical imaging technique that combines optical image contrast with ultrasound detection principles. Most existing reconstruction algorithms for PAT assume the object of interest possesses homogeneous acoustic properties. The images produced by such algorithms can contain significant distortions and artifacts when the object’s acoustic properties are spatially variant. In this work, we establish an image reconstruction formula for PAT applications in which a planar detection surface is employed and the to-be-imaged optical absorber is embedded in a known planar layered acoustic medium. The reconstruction formula is exact in a mathematical sense and accounts for multiple acoustic reflections between the layers of the medium. Computer-simulation studies are conducted to demonstrate and investigate the proposed method.

© 2011 Optical Society of America

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

History
Original Manuscript: January 19, 2011
Manuscript Accepted: February 8, 2011
Published: May 19, 2011

Virtual Issues
Vol. 6, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Robert W. Schoonover and Mark A. Anastasio, "Image reconstruction in photoacoustic tomography involving layered acoustic media," J. Opt. Soc. Am. A 28, 1114-1120 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-28-6-1114


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys. 35, 5758 (2008). [CrossRef]
  2. M. Xu and L. V. Wang, “Biomedical photoacoustics,” Rev. Sci. Instrum. 77, 041101 (2006). [CrossRef]
  3. A. A. Oraevsky and A. A. Karabutov, “Optoacoustic tomography,” in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).
  4. L.Wang, ed., Photoacoustic Imaging and Spectroscopy (CRC Press, 2009). [CrossRef]
  5. V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev. 110, 2783–2794 (2010). [CrossRef] [PubMed]
  6. R. Kruger, D. Reinecke, and G. Kruger, “Thermoacoustic computed tomography—technical considerations,” Med. Phys. 26, 1832–1837 (1999). [CrossRef] [PubMed]
  7. M. Haltmeier, O. Scherzer, P. Burgholzer, and G. Paltauf, “Thermoacoustic computed tomography with large planar receivers,” Inverse Probl. 20, 1663–1673 (2004). [CrossRef]
  8. P. Ephrat, L. Keenliside, A. Seabrook, F. S. Prato, and J. J. L. Carson, “Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction,” J. Biomed. Opt. 13, 054052 (2008). [CrossRef] [PubMed]
  9. B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866–1875 (2006). [CrossRef] [PubMed]
  10. K. Wang, S. Ermilov, R. Su, H. Brecht, A. Oraevsky, and M. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography,” IEEE Trans. Med. Imag. 30, 203–214 (2010). [CrossRef]
  11. M. A. Anastasio, J. Zhang, D. Modgil, and P. J. L. Riviere, “Application of inverse source concepts to photoacoustic tomography,” Inverse Probl. 23, S21–S35 (2007). [CrossRef]
  12. L. A. Kunyansky, “Explicit inversion formulae for the spherical mean radon transform,” Inverse Probl. 23, 373–383 (2007). [CrossRef]
  13. D. Finch, M. Haltmeier, and Rakesh, “Inversion of spherical means and the wave equation in even dimensions,” SIAM J. Appl. Math. 68, 392–412 (2007). [CrossRef]
  14. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706 (2005). [CrossRef]
  15. D. Finch, S. Patch, and Rakesh, “Determining a function from its mean values over a family of spheres,” SIAM J. Math. Anal. 35, 1213–1240 (2004). [CrossRef]
  16. Y. Xu, D. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography: I. Planar geometry,” IEEE Trans. Med. Imag. 21, 823–828 (2002). [CrossRef]
  17. K. P. Köstli, M. Frenz, H. Bebie, and H. P. Weber, “Temporal backward projection of optoacoustic pressure transients using Fourier transform methods,” Phys. Med. Biol. 46, 1863–1872(2001). [CrossRef] [PubMed]
  18. R. A. Kruger, P. Liu, R. Fang, and C. Appledorn, “Photoacoustic ultrasound (PAUS) reconstruction tomography,” Med. Phys. 22, 1605–1609 (1995). [CrossRef] [PubMed]
  19. Y. Xu and L. V. Wang, “Effects of acoustic heterogeneity in breast thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1134–1146 (2003). [CrossRef] [PubMed]
  20. M. A. Anastasio, J. Zhang, X. Pan, Y. Zou, G. Keng, and L. V. Wang, “Half-time image reconstruction in thermoacoustic tomography,” IEEE Trans. Med. Imag. 24, 199–210 (2005). [CrossRef]
  21. D. Modgil, M. A. Anastasio, and P. J. L. Rivière, “Image reconstruction in photoacoustic tomography with variable speed of sound using a higher-order geometrical acoustics approximation,” J. Biomed. Opt. 15, 021308 (2010). [CrossRef] [PubMed]
  22. M. Agranovsky and P. Kuchment, “Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed,” Inverse Probl. 23, 2089–2102 (2007). [CrossRef]
  23. X. Jin and L. V. Wang, “Thermoacoustic tomography with correction for acoustic speed variations,” Phys. Med. Biol. 51, 6437–6448 (2006). [CrossRef] [PubMed]
  24. R. Willemink, S. Manohar, Y. Purwar, C. Slump, F. van der Heijden, and T. van Leeuwen, “Imaging of acoustic attenuation and speed of sound maps using photoacoustic measurements,” Proc. SPIE 6920, 692013 (2008). [CrossRef]
  25. Y. Hristova, P. Kuchment, and L. Nguyen, “Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media,” Inverse Probl. 24, 055006 (2008). [CrossRef]
  26. P. Stefanov and G. Uhlmann, “Thermoacoustic tomography with variable sound speed,” Inverse Probl. 25, 075011 (2009). [CrossRef]
  27. C. Tai, Dyadic Green Functions in Electromagnetic Theory (IEEE, 1994).
  28. M. Haltmeier, O. Scherzer, and G. Zangerl, “A reconstruction algorithm for photoacoustic imaging based on the nonuniform FFT,” IEEE Trans. Med. Imag. 28, 1727–1735 (2009). [CrossRef]
  29. P. J. L. Riviere, J. Zhang, and M. A. Anastasio, “Image reconstruction in optoacoustic tomography for dispersive acoustic media,” Opt. Lett. 31, 781–783 (2006). [CrossRef] [PubMed]
  30. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  31. M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003). [CrossRef]
  32. P. Morse and K. Ingard, Theoretical Acoustics (Princeton University Press, 1986).
  33. M. A. Anastasio, M. Kupinski, and X. Pan, “Noise properties of reconstructed images in ultrasound diffraction tomography,” IEEE Trans. Nucl. Sci. 45, 2216–2223 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited