OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Digital holographic microscopy with pure-optical spherical phase compensation

Emilio Sánchez-Ortiga, Pietro Ferraro, Manuel Martínez-Corral, Genaro Saavedra, and Ana Doblas  »View Author Affiliations


JOSA A, Vol. 28, Issue 7, pp. 1410-1417 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001410


View Full Text Article

Enhanced HTML    Acrobat PDF (1172 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Telecentric architecture is proposed for circumventing, by the pure-optical method, the residual parabolic phase distortion inherent to standard configuration of digital holographic microscopy. This optical circumvention produces several important advantages. One is that there is no need for computer compensation of the parabolic phase during the phase map recovering procedure. The other is that in off-axis configuration, the spatial frequency useful domain is enlarged. The validity of the method is demonstrated by performing quantitative measurement of depth differences with high axial resolution.

© 2011 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(180.6900) Microscopy : Three-dimensional microscopy
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: April 1, 2011
Revised Manuscript: May 13, 2011
Manuscript Accepted: May 15, 2011
Published: June 15, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Emilio Sánchez-Ortiga, Pietro Ferraro, Manuel Martínez-Corral, Genaro Saavedra, and Ana Doblas, "Digital holographic microscopy with pure-optical spherical phase compensation," J. Opt. Soc. Am. A 28, 1410-1417 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-28-7-1410


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994). [CrossRef] [PubMed]
  2. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994). [CrossRef]
  3. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999). [CrossRef]
  4. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, and R. Meucci, “Whole optical wavefields reconstruction by digital holography,” Opt. Express 9, 294–302 (2001). [CrossRef] [PubMed]
  5. D. Gabor, “A new microscopic principle,” Nature 161, 777–778(1948). [CrossRef] [PubMed]
  6. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a non-invasive contrast imaging technique allowing quantitative visualization of living cells with subwavelenght axial accuracy,” Opt. Lett. 30, 468–471 (2005). [CrossRef] [PubMed]
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  8. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34, 767–770 (2009). [CrossRef] [PubMed]
  9. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, “Fourier phase microscopy for investigation of biological structures and dynamics,” Opt. Lett. 29, 2503–2506 (2004). [CrossRef] [PubMed]
  10. L. Miccio, A. Finizio, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization,” Biomed. Opt. Express 2, 331–344 (2011). [CrossRef] [PubMed]
  11. P. Ferraro, S. De Nicola, A. Finizio, C. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt. 42, 1938–1946(2003). [CrossRef] [PubMed]
  12. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete compensation in digital microscopy,” J. Opt. Soc. Am. A 23, 3177–3190 (2006). [CrossRef]
  13. P. Ferraro, D. Alferi, S. De Nicola, L. De Petrocellis, A. Finizio, and G. Pierattini, “Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction,” Opt. Lett. 31, 1405–1407 (2006). [CrossRef] [PubMed]
  14. F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944–2953 (2006). [CrossRef]
  15. Z. W. Zhou, Y. Yingjie, and A. Asundi, “Study on aberration suppresing methods in digital micro-holography,” Opt. Lasers Eng. 47, 264–270 (2009). [CrossRef]
  16. C. J. Mann, L. Yu, C. Lo, and M. K. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005). [CrossRef] [PubMed]
  17. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, “Hilbert phase microscopy for inversting fast dynamics in trnsparent systems,” Opt. Lett. 30, 1165–1167 (2005). [CrossRef] [PubMed]
  18. T. Colomb, J. Kühn, F. Charière, and C. Depeursinge, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006). [CrossRef] [PubMed]
  19. G. Coppola, G. Di Caprio, M. Gioffré, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizio, and P. Ferraro, “Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction,” Opt. Lett. 35, 3390–3392 (2010). [CrossRef] [PubMed]
  20. J. Jang, C. Y. Bae, J.-K. Park, and J. C. Ye, “Self-reference quantitative phase microscopy for microfluidic devices,” Opt. Lett. 35, 514–516 (2010). [CrossRef] [PubMed]
  21. Q. Weijan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett. 34, 1276–1279 (2009). [CrossRef]
  22. T. Kozacki, M. Józwik, and R. Józwicki, “Determination of optical field generated by using digital holography,” Opto-Electron. Rev. 17, 211–216 (2009). [CrossRef]
  23. R. Juskaitis, “Characterizing high-NA microscope objective lenses,” in Optical Imaging and Microscopy: Techniques and Advanced Systems, P.Török and F.J.Kao, eds. (Springer, 2003), pp. 21–43.
  24. M. Martínez-Corral and G. Saavedra, “The resolution challenge in 3D optical microscopy,” Prog. Opt. 53, 1–67 (2009). [CrossRef]
  25. R. M. Goldstein, H. A. Zebker, and C. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713–720 (1988). [CrossRef]
  26. L. Aiello, D. Riccio, P. Ferraro, S. Grillo, L. Sansone, G. Coppola, S. De Nicola, and A. Finizio, “Green’s formulation for robust phase unwrapping in digital holography,” Opt. Lasers Eng. 45, 750–755 (2007). [CrossRef]
  27. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000). [CrossRef]
  28. J. Kühn, E. Cuche, Y. Emery, T. Coulomb, F. Charrière, F. Monfort, M. Botkine, N. Aspert, and C. Depeursinge, “Measurements of corner cubes microstructures by high-magnification digital holographic microscopy,” Proc. SPIE 6188, 618804(2006). [CrossRef]
  29. P. Picart and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” J. Opt. Soc. Am. 25, 1744–1761 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1214 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited