OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Theoretical study of acousto-optical coherence tomography using random phase jumps on ultrasound and light

M. Lesaffre, S. Farahi, A. C. Boccara, F. Ramaz, and M. Gross  »View Author Affiliations

JOSA A, Vol. 28, Issue 7, pp. 1436-1444 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (422 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Acousto-optical coherence tomography (AOCT) is a variant of acousto-optic imaging (also called ultrasonic modulation imaging) that makes it possible to get the z resolution with acoustic and optic continuous wave beams. We describe here theoretically the AOCT effect, and we show that the acousto-optic “tagged photons” remain coherent if they are generated within a specific z region of the sample. We quantify the z selectivity for both the “tagged photon” field and for the Lesaffre et al. [ Opt. Express 17, 18211 (2009)] photorefractive signal.

© 2011 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(110.7170) Imaging systems : Ultrasound
(160.5320) Materials : Photorefractive materials
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 2, 2010
Revised Manuscript: February 22, 2011
Manuscript Accepted: February 23, 2011
Published: June 17, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

M. Lesaffre, S. Farahi, A. C. Boccara, F. Ramaz, and M. Gross, "Theoretical study of acousto-optical coherence tomography using random phase jumps on ultrasound and light," J. Opt. Soc. Am. A 28, 1436-1444 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Kempe, M. Larionov, D. Zaslavsky, and A. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997). [CrossRef]
  2. S. Lévêque-Fort, “Three-dimensional acousto-optic imaging in biological tissues with parallel signal processing,” Appl. Opt. 40, 1029–1036 (2001). [CrossRef]
  3. M. Atlan, B. Forget, F. Ramaz, A. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362(2005). [CrossRef] [PubMed]
  4. L. Wang, S. Jacques, and X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995). [CrossRef] [PubMed]
  5. W. Leutz and G. Maret, “Ultrasonic modulation of multiply scattered light,” Phys. B 204, 14–19 (1995). [CrossRef]
  6. L. Wang and X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997). [CrossRef]
  7. G. Yao and L. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39, 659–664 (2000). [CrossRef]
  8. S. Leveque, A. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999). [CrossRef]
  9. M. Gross, P. Goy, and M. Al-Koussa, “Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging,” Opt. Lett. 28, 2482–2484 (2003). [CrossRef] [PubMed]
  10. F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Opt. Lett. 25, 716–718 (2000). [CrossRef]
  11. M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007). [CrossRef] [PubMed]
  12. F. Verpillat, F. Joud, M. Atlan, and M. Gross, “Digital holography at shot noise level,” J. Disp. Technol. 6, 455–464 (2010). [CrossRef]
  13. L. Wang and G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977(1998). [CrossRef]
  14. G. Yao, S. Jiao, and L. Wang, “Frequency-swept ultrasound-modulated optical tomography in biological tissue by use of parallel detection,” Opt. Lett. 25, 734–736 (2000). [CrossRef]
  15. B. Forget, F. Ramaz, M. Atlan, J. Selb, and A. Boccara, “High-contrast fast Fourier transform acousto-optical tomography of phantom tissues with a frequency-chirp modulation of the ultrasound,” Appl. Opt. 42, 1379–1383 (2003). [CrossRef] [PubMed]
  16. M. Gross, P. Goy, B. Forget, M. Atlan, F. Ramaz, A. Boccara, and A. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005). [CrossRef] [PubMed]
  17. Y. Li, H. Zhang, C. Kim, K. Wagner, P. Hemmer, and L. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008). [CrossRef]
  18. Y. Li, P. Hemmer, C. Kim, H. Zhang, and L. Wang, “Detection of ultrasound-modulated diffuse photons using spectral-hole burning,” Opt. Express 16, 14862–14874 (2008). [CrossRef] [PubMed]
  19. G. Rousseau, A. Blouin, and J. Monchalin, “Ultrasound-modulated optical imaging using a high-power pulsed laser and a double-pass confocal Fabry–Perot interferometer,” Opt. Lett. 34, 3445–3447 (2009). [CrossRef] [PubMed]
  20. T. Murray, L. Sui, G. Maguluri, R. Roy, A. Nieva, F. Blonigen, and C. DiMarzio, “Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect,” Opt. Lett. 29, 2509–2511 (2004). [CrossRef] [PubMed]
  21. L. Sui, R. Roy, C. DiMarzio, and T. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005). [CrossRef] [PubMed]
  22. M. Gross, F. Ramaz, B. Forget, M. Atlan, A. Boccara, P. Delaye, and G. Roosen, “Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media,” Opt. Express 13, 7097–7112 (2005). [CrossRef] [PubMed]
  23. F. Ramaz, B. Forget, M. Atlan, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues,” Opt. Express 12, 5469–5474 (2004). [CrossRef] [PubMed]
  24. M. Lesaffre, F. Jean, F. Ramaz, A. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042(2007). [CrossRef] [PubMed]
  25. A. Lev and B. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003). [CrossRef] [PubMed]
  26. A. Lev, E. Rubanov, B. Sfez, S. Shany, and A. Foldes, “Ultrasound-modulated light tomography assessment of osteoporosis,” Opt. Lett. 30, 1692–1694 (2005). [CrossRef] [PubMed]
  27. S. Farahi, G. Montemezzani, A. Grabar, J. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010). [CrossRef] [PubMed]
  28. E. Bossy, L. Sui, T. Murray, and R. Roy, “Fusion of conventional ultrasound imaging and acousto-optic sensing by use of a standard pulsed-ultrasound scanner,” Opt. Lett. 30, 744–746 (2005). [CrossRef] [PubMed]
  29. G. Rousseau, A. Blouin, and J. Monchalin, “Ultrasound-modulated optical imaging using a powerful long pulse laser,” Opt. Express 16, 12577–12590 (2008). [CrossRef] [PubMed]
  30. M. Lesaffre, S. Farahi, M. Gross, P. Delaye, C. Boccara, and F. Ramaz, “Acousto-optical coherence tomography using random phase jumps on ultrasound and light,” Opt. Express 17, 18211–18218 (2009). [CrossRef] [PubMed]
  31. P. Lai, R. Roy, and T. Murray, “Quantitative characterization of turbid media using pressure contrast acousto-optic imaging,” Opt. Lett. 34, 2850–2852 (2009). [CrossRef] [PubMed]
  32. P. Delaye, L. De Montmorillon, and G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154–164(1995). [CrossRef]
  33. P. Delaye, A. Blouin, D. Drolet, L. de Montmorillon, G. Roosen, and J. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997). [CrossRef]
  34. L. De Montmorillon, P. Delaye, J. Launay, and G. Roosen, “Novel theoretical aspects on photorefractive ultrasonic detection and implementation of a sensor with an optimum sensitivity,” J. Appl. Phys. 82, 5913–5923 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited