OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Class-based spectral reconstruction based on unmixing of low-resolution spectral information

Yuri Murakami, Masahiro Yamaguchi, and Nagaaki Ohyama  »View Author Affiliations


JOSA A, Vol. 28, Issue 7, pp. 1470-1481 (2011)
http://dx.doi.org/10.1364/JOSAA.28.001470


View Full Text Article

Enhanced HTML    Acrobat PDF (1826 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper proposes a class-based spectral estimation method for high-resolution red, green, and blue (RGB) images and corresponding low-resolution spectral data. Each spectrum in the low-resolution data is assumed to be a mixture of spectra of different classes. Then, the spectral estimation matrix for every class is derived using a regression approach, in which the clustering results of the high-resolution RGB image are used to incorporate spectral unmixing. Experiments confirm reduced normalized root mean squared error for the spectral images if the number of classes in the clustering is appropriately selected. In addition, the experimental results show that the spectra are accurately reconstructed even when they are observed as mixed spectra in the low-resolution data.

© 2011 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(330.1690) Vision, color, and visual optics : Color
(110.1758) Imaging systems : Computational imaging
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Image Processing

History
Original Manuscript: March 11, 2011
Revised Manuscript: April 19, 2011
Manuscript Accepted: May 4, 2011
Published: June 27, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Yuri Murakami, Masahiro Yamaguchi, and Nagaaki Ohyama, "Class-based spectral reconstruction based on unmixing of low-resolution spectral information," J. Opt. Soc. Am. A 28, 1470-1481 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-28-7-1470


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. D. Berns and R. S. Berns, “Analysis of multispectral image capture,” in Proceedings of the 4th Color Imaging Conference (IS&T, 1996), pp. 19–22.
  2. M. Hauta-Kasari, K. Miyazawa, S. Toyooka, and J. Parkkinen, “Spectral vision system for measuring color images,” J. Opt. Soc. Am. A 16, 2352–2362 (1999). [CrossRef]
  3. B. Hill, “Color capture, color management and the problem of metamerism,” Proc. SPIE 3963, 2–14 (1999). [CrossRef]
  4. H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura, and Y. Miyake, “System design for accurately estimating spectral reflectance of art paintings,” Appl. Opt. 39, 6621–6632 (2000). [CrossRef]
  5. J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002). [CrossRef]
  6. M. Yamaguchi, R. Iwama, Y. Ohya, T. Obi, N. Ohyama, Y. Komiya, and T. Wada, “Natural color reproduction in the television system for telemedicine,” Proc. SPIE 3031, 482–289 (1997). [CrossRef]
  7. M. Yamaguchi, T. Teraji, K. Ohsawa, T. Uchiyama, H. Motomura, Y. Murakami, and N. Ohyama, “Color image reproduction based on the multispectral and multiprimary imaging: experimental evaluation,” Proc. SPIE 4663, 15–26 (2002). [CrossRef]
  8. M. Yamaguchi, H. Hideaki, and N. Ohyama, “Beyond red-green-blue (RGB): spectrum-based color imaging technology,” J. Imaging Sci. Technol. 52, 010201 (2008). [CrossRef]
  9. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18, 14330–14344(2010). [CrossRef] [PubMed]
  10. M. E. Gehm, R. John, D. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperse architecture,” Opt. Express 15, 14013–14027 (2007). [CrossRef] [PubMed]
  11. M. A. Golub, M. Nathan, A. Averbuch, E. Lavi, V. A. Zheludev, and A. Schclar, “Spectral multiplexing method for digital snapshot spectral imaging,” Appl. Opt. 48, 1520–1526 (2009). [CrossRef] [PubMed]
  12. D. Dupont, “Study of the reconstruction of reflectance curves based on tristimulus values: comparison of methods of optimization,” Color Res. Appl. 27, 88–99 (2002). [CrossRef]
  13. J. M. DiCarlo and B. A. Wandell, “Spectral estimation theory: beyond linear but before Bayesian,” J. Opt. Soc. Am. A 20, 1261–1270 (2003). [CrossRef]
  14. H. Shen, P. Cai, S. Shao, and J. H. Xin, “Reflectance reconstruction for multispectral imaging by adaptive Wiener estimation,” Opt. Express 15, 15545–15554 (2007). [CrossRef] [PubMed]
  15. P. Morovic and G. D. Finlayson, “Metamer-set-based approach to estimating surface reflectance from camera RGB,” J. Opt. Soc. Am. A 23, 1814–1822 (2006). [CrossRef]
  16. F. Ayala, J. F. Echavarri, and P. Renet, “Use of three tristimulus values from surface reflectance spectra to calculate the principal components for reconstructing these spectra by using only three eigenvectors,” J. Opt. Soc. Am. A 23, 2020–2026 (2006). [CrossRef]
  17. X. Zhang and H. Xu, “Reconstructing spectral reflectance by dividing spectral space and extending the principal components in principal component analysis,” J. Opt. Soc. Am. A 25, 371–378(2008). [CrossRef]
  18. V. Heikkinen, T. Jetsu, J. Parkkinen, M. Hauta-Kasari, T. Jaaskelainen, and S. D. Lee, “Regularized learning framework in the estimation of reflectance spectra from camera responses,” J. Opt. Soc. Am. A 24, 2673–2683 (2007). [CrossRef]
  19. C. A. Dávila and B. R. Hunt, “Training of a neural network for image superresolution based on a nonlinear interpolative vector quantizer,” Appl. Opt. 39, 3473–3485 (2000). [CrossRef]
  20. Y. Murakami, T. Obi, M. Yamaguchi, and N. Ohyama, “Nonlinear estimation of spectral reflectance based on Gaussian mixture distribution for color image reproduction,” Appl. Opt. 41, 4840–4847 (2002). [CrossRef] [PubMed]
  21. K. Ietomi, Y. Murakami, M. Yamaguchi, and N. Ohyama, “MAP estimation for spectral image reconstruction using 3-band image and multipoint spectral measurements,” in Proceedings of the 9th International Symposium on Multispectral Colour Science and Application (IS&T, 2007), pp. 53–59.
  22. Y. Murakami, K. Ietomi, M. Yamaguchi, and N. Ohyama, “MAP estimation of spectral reflectance from color image and multipoint spectral measurements,” Appl. Opt. 46, 7068–7082(2007). [CrossRef] [PubMed]
  23. Y. Murakami, K. Ietomi, A. Tadano, M. Yamaguchi, and N. Ohyama, “Comparison of spectral image reconstruction methods using multipoint spectral measurements,” in Proceedings of the 4th European Conference on Colour in Graphics, Imaging, and Vision (IS&T, 2008), pp. 591–596.
  24. Y. Murakami, M. Yamaguchi, and N. Ohyama, “Piecewise Wiener estimation for reconstruction of spectral reflectance image by multipoint spectral measurements,” Appl. Opt. 48, 2188–2202(2009). [CrossRef] [PubMed]
  25. J. C. Price, “Combining panchromatic and multispectral imagery from dual resolution satellite instruments,” Remote Sens. Environ. 21, 119–128 (1987). [CrossRef]
  26. D. P. Filiberti, S. E. Marsh, and R. A. Schowengerdt, “Synthesis of imagery with high spatial and spectral resolution from multiple image sources,” Opt. Eng. 33, 2520–2528 (1994). [CrossRef]
  27. M. T. Eismann and R. C. Hardie, “Application of the stochastic mixing model to hyperspectral resolution enhancement,” IEEE Trans. Geosci. Remote Sens. 42, 1924–1933 (2004). [CrossRef]
  28. M. T. Eismann and R. C. Hardie, “Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions,” IEEE Trans. Geosci. Remote Sens. 43, 455–465 (2005). [CrossRef]
  29. O. Kohonen, “Multiresolution-based pansharpening in spectral color images,” in Proceedings of the 5th European Conference on Colour in Graphics, Imaging, and Vision (IS&T, 2010), pp. 535–540.
  30. A. Santos-Garcia, M. Velez-Reyez, S. Rosario-Torres, and J. D. Chinea, “A comparison of unmixing algorithms for hyperspectral imagery,” Proc. SPIE 7334, 73341N (2009). [CrossRef]
  31. B. Zhukov, D. Oertel, F. Lanzl, and G. Reinhackel, “Unmixing-based multisensory multiresolution image fusion,” IEEE Trans. Geosci. Remote Sens. 37, 1212–1226 (1999). [CrossRef]
  32. A. Minghelli-Roman, M. Mangolini, M. Petit, and L. Polodori, “Spatial resolution improvement of MeRIS images by fusion with TM images,” IEEE Trans. Geosci. Remote Sens. 39, 1533–1536 (2002). [CrossRef]
  33. R. Zurita-Milla, J. G. P. W. Clevers, and M. E. Schaepman, “Unmixing-based Landsat TM and MERIS FR data fusion,” IEEE Geosci. Remote Sens. Lett. 5, 453–457 (2008). [CrossRef]
  34. H. Fukuda, T. Uchiyama, H. Haneishi, M. Yamaguchi, and N. Ohyama, “Development of 16-band multispectral image archiving system,” Proc. SPIE 5667, 136–145 (2005). [CrossRef]
  35. CIE Technical Report, “Colorimetry,” 3rd ed. (CIE Central Bureau, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited