OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Deterministic regularization of three-dimensional optical diffraction tomography

Yongjin Sung and Ramachandra R. Dasari  »View Author Affiliations

JOSA A, Vol. 28, Issue 8, pp. 1554-1561 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (904 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we discuss a deterministic regularization algorithm to handle the missing cone problem of three-dimensional optical diffraction tomography (ODT). The missing cone problem arises in most practical applications of ODT and is responsible for elongation of the reconstructed shape and underestimation of the value of the refractive index. By applying positivity and piecewise-smoothness constraints in an iterative reconstruction framework, we effectively suppress the missing cone artifact and recover sharp edges rounded out by the mis sing cone, and we significantly improve the accuracy of the predictions of the refractive index. We also show the noise-handling capability of our algorithm in the reconstruction process.

© 2011 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.0180) Microscopy : Microscopy

ToC Category:
Image Processing

Original Manuscript: January 11, 2011
Revised Manuscript: May 8, 2011
Manuscript Accepted: May 24, 2011
Published: July 6, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Yongjin Sung and Ramachandra R. Dasari, "Deterministic regularization of three-dimensional optical diffraction tomography," J. Opt. Soc. Am. A 28, 1554-1561 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969). [CrossRef]
  2. A. Devaney, “Inverse-scattering theory within the Rytov approximation,” Opt. Lett. 6, 374–376 (1981). [CrossRef] [PubMed]
  3. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. Dasari, and M. Feld, “Optical diffraction tomography for high-resolution live-cell imaging,” Opt. Express 17, 266–277 (2009). [CrossRef] [PubMed]
  4. A. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imag. 4, 336–350 (1982). [CrossRef]
  5. G. Tsihrintzis and A. Devaney, “Higher-order (nonlinear) diffraction tomography: reconstruction algorithms and computer simulation,” IEEE Trans. Image Process. 9, 1560–1572 (2000). [CrossRef]
  6. M. Defrise and C. De Mol, “A regularized iterative algorithm for limited-angle inverse Radon transform,” J. Mod. Opt. 30, 403–408 (1983). [CrossRef]
  7. A. Delaney and Y. Bresler, “Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography,” IEEE Trans. Image Process. 7, 204–221 (1998). [CrossRef]
  8. M. Persson, D. Bone, and H. Elmqvist, “Total variation norm for three-dimensional iterative reconstruction in limited view angle tomography,” Phys. Med. Biol. 46, 853 (2001). [CrossRef] [PubMed]
  9. A. Zunino, F. Benvenuto, E. Armadillo, M. Bertero, and E. Bozzo, “Iterative deconvolution and semiblind deconvolution methods in magnetic archaeological prospecting,” Geophysics 74, L43 (2009). [CrossRef]
  10. M. Bronstein, A. Bronstein, M. Zibulevsky, and H. Azhari, “Reconstruction in diffraction ultrasound tomography using nonuniform FFT,” IEEE Trans. Med. Imaging 21, 1395–1401 (2002). [CrossRef]
  11. K. Belkebir and A. Sentenac, “High-resolution optical diffraction microscopy,” J. Opt. Soc. Am. A 20, 1223–1229 (2003). [CrossRef]
  12. G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009). [CrossRef] [PubMed]
  13. K. Belkebir, P. C. Chaumet, and A. Sentenac, “Superresolution in total internal reflection tomography,” J. Opt. Soc. Am. A 22, 1889–1897 (2005). [CrossRef]
  14. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006). [CrossRef] [PubMed]
  15. K. Lada and A. Devaney, “Iterative methods in geophysical diffraction tomography,” Inverse Probl. 8, 119–132 (1992). [CrossRef]
  16. O. Haeberlé, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques, and perspectives,” J. Mod. Opt. 57, 686–699 (2010). [CrossRef]
  17. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. Dasari, and M. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007). [CrossRef] [PubMed]
  18. J. Goodman, Introduction to Fourier Optics (Roberts, 2005).
  19. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Taylor & Francis, 1998). [CrossRef]
  20. M. Piana and M. Bertero, “Projected Landweber method and preconditioning,” Inverse Probl. 13, 441–463 (1997). [CrossRef]
  21. C. Vogel, Computational Methods for Inverse Problems (Society for Industrial Mathematics, 2002). [CrossRef]
  22. P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, “Deterministic edge-preserving regularization in computed imaging,” IEEE Trans. Image Process. 6, 298–311(1997). [CrossRef] [PubMed]
  23. R. Barer and S. Tkaczyk, “Refractive index of concentrated protein solutions,” Nature 173, 821–822 (1954). [CrossRef] [PubMed]
  24. R. Gerchberg, “Super-resolution through error energy reduction,” J. Mod. Opt. 21, 709–720 (1974). [CrossRef]
  25. A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circuits Syst. 22, 735–742(1975). [CrossRef]
  26. A. Baussard, K. Belkebir, and D. Premel, “A markovian regularization approach of the modified gradient method for solving a two-dimensional inverse scattering problem,” J. Electromag. Waves Appl. 17, 989–1008 (2003). [CrossRef]
  27. H. Ayasso, B. Duchêne, and A. Mohammad-Djafari, “Bayesian inversion for optical diffraction tomography,” J. Mod. Opt. 57, 765–776 (2010). [CrossRef]
  28. K. Ladas and A. Devaney, “Generalized ART algorithm for diffraction tomography,” Inverse Probl. 7, 109–125 (1991). [CrossRef]
  29. M. Schabel, “3D Shepp-Logan phantom,” MATLAB Central File Exchange (2006).
  30. E. Mudry, P. Chaumet, K. Belkebir, G. Maire, and A. Sentenac, “Mirror-assisted tomographic diffractive microscopy with isotropic resolution,” Opt. Lett. 35, 1857–1859 (2010). [CrossRef] [PubMed]
  31. A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited