OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Coherence effects in Mie scattering

David G. Fischer, Thomas van Dijk, Taco D. Visser, and Emil Wolf  »View Author Affiliations

JOSA A, Vol. 29, Issue 1, pp. 78-84 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (850 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The scattering of a partially coherent beam by a deterministic, spherical scatterer is studied. In particular, the Mie scattering by a Gaussian Schell-model beam is analyzed. Expressions are derived for (a) the extinguished power, (b) the radiant intensity of the scattered field, and (c) the encircled energy in the far field. It is found that the radiant intensity and the encircled energy in the far field depend on the degree of coherence of the incident beam, whereas the extinguished power does not.

© 2012 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(290.4020) Scattering : Mie theory
(290.5825) Scattering : Scattering theory

ToC Category:
Coherence and Statistical Optics

Original Manuscript: July 29, 2011
Revised Manuscript: October 17, 2011
Manuscript Accepted: October 20, 2011
Published: December 7, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

David G. Fischer, Thomas van Dijk, Taco D. Visser, and Emil Wolf, "Coherence effects in Mie scattering," J. Opt. Soc. Am. A 29, 78-84 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. IV, Folge 25, 377–445 (1908). [CrossRef]
  2. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957). See Chap. 9.
  3. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999).
  4. H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering (Cambridge University, 1992). See Chap. 5. [CrossRef]
  5. W. T. Grandy, Jr., Scattering of Waves from Large Spheres (Cambridge University, 1992). See Chap. 3.
  6. P. S. Carney, E. Wolf, and G. S. Agarwal, “Statistical generalizations of the optical cross-section theorem with application to inverse scattering,” J. Opt. Soc. Am. A 14, 3366–3371 (1997). [CrossRef]
  7. P. S. Carney and E. Wolf, “An energy theorem for scattering of partially coherent beams,” Opt. Commun. 155, 1–6 (1998). [CrossRef]
  8. D. Cabaret, S. Rossano, and C. Brouder, “Mie scattering of a partially coherent beam,” Opt. Commun. 150, 239–250 (1998). [CrossRef]
  9. J. J. Greffet, M. De La Cruz-Gutierrez, P. V. Ignatovich, and A. Radunsky, “Influence of spatial coherence on scattering by a particle,” J. Opt. Soc. Am. A 20, 2315–2320 (2003). [CrossRef]
  10. T. D. Visser, D. G. Fischer, and E. Wolf, “Scattering of light from quasi-homogeneous sources by quasi-homogeneous media,” J. Opt. Soc. Am. A 23, 1631–1638 (2006). [CrossRef]
  11. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007). See Chap. 6.
  12. T. van Dijk, D. G. Fischer, T. D. Visser, and E. Wolf, “Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere,” Phys. Rev. Lett. 104, 173902 (2010). [CrossRef] [PubMed]
  13. G. Gbur and T. D. Visser, “The structure of partially coherent fields,” in Vol.  55 of Progress in Optics, E.Wolf, ed. (Elsevier, 2010), pp. 285–341. [CrossRef]
  14. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  15. C. J. Joachain, Quantum Collision Theory, 3rd ed. (Elsevier, 1987).
  16. D. Zwillinger, Handbook of Integration (Jones and Bartlett, 1992), Chap. 8.
  17. F. Gori, C. Palma, and M. Santarsiero, “A scattering experiment with partially coherent light,” Opt. Commun. 74, 353–356 (1990). [CrossRef]
  18. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, 2nd ed. (McGraw, 1968). See p. 852.
  19. M. W. Kowarz and E. Wolf, “Conservation laws for partially coherent free fields,” J. Opt. Soc. Am. A 10, 88–94 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited