OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 4 — Mar. 29, 2012

The perceptual balance of color

Kyle C. McDermott and Michael A. Webster  »View Author Affiliations

JOSA A, Vol. 29, Issue 2, pp. A108-A117 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (781 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The cone contrasts carrying different dimensions of color vision vary greatly in magnitude, yet the perceived contrast of color and luminance in the world appears similar. We examined how this perceptual balance is adjusted by adaptation to the contrast in images. Observers set the level of L vs. M and S vs. LM contrast in 1/f noise images to match the perceived strength of a fixed level of luminance contrast. The perceptual balance of color in the images was roughly consistent with the range of contrast characteristic of natural images. Relative perceived contrast could be strongly biased by brief prior exposure to images with lower or higher levels of chromatic contrast. Similar adaptation effects were found for luminance contrast in images of natural scenes. For both, observers reliably chose the contrast balance that appeared correct, and these choices were rapidly recalibrated by adaptation. This recalibration of the norm for contrast could reflect both changes in sensitivity and shifts in criterion. Our results are consistent with the possibility that color mechanisms adjust the range of their responses to match the range of signals in the environment, and that contrast adaptation plays an important role in these adjustments.

© 2012 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.7310) Vision, color, and visual optics : Vision
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Color sensitivity and appearance

Original Manuscript: September 1, 2011
Revised Manuscript: November 25, 2011
Manuscript Accepted: November 29, 2011
Published: January 17, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Kyle C. McDermott and Michael A. Webster, "The perceptual balance of color," J. Opt. Soc. Am. A 29, A108-A117 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. Lond. B 220, 89–113 (1983). [CrossRef]
  2. D. L. Ruderman, T. W. Cronin, and C. C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998). [CrossRef]
  3. L. T. Maloney, “Physics-based approaches to modeling surface color perception,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 387–416.
  4. D. I. A. MacLeod, “Colour discrimination, colour constancy, and natural scene statistics (the Verriest lecture),” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 189–217.
  5. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005). [CrossRef]
  6. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999). [CrossRef]
  7. C. A. Curcio, K. A. Allen, K. R. Sloan, C. L. Lerea, J. B. Hurley, I. B. Klock, and A. H. Milam, “Distribution and morphology of human cone photoreceptors stained with anti-blue opsin,” J. Comp. Neurol. 312, 610–624 (1991). [CrossRef]
  8. S. Laughlin, “A simple coding procedure enhances a neuron’s information capacity,” Z. Naturforsch. C 36, 910–912 (1981).
  9. A. Chaparro, C. F. Stromeyer, E. P. Huang, R. E. Kronauer, and R. T. Eskew, “Colour is what the eye sees best,” Nature 361, 348–350 (1993). [CrossRef]
  10. K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
  11. G. R. Cole, T. Hine, and W. McIlhagga, “Detection mechanisms in L-, M-, and S-cone contrast space,” J. Opt. Soc. Am. A 10, 38–51 (1993). [CrossRef]
  12. R. L. De Valois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000). [CrossRef]
  13. K. T. Mullen, S. O. Dumoulin, and R. F. Hess, “Color responses of the human lateral geniculate nucleus: selective amplification of S-cone signals between the lateral geniculate nucleus and primary visual cortex measured with high-field fMRI,” Eur. J. Neurosci. 28, 1911–1923 (2008). [CrossRef]
  14. B. E. Schefrin and J. S. Werner, “Loci of spectral unique hues throughout the life span,” J. Opt. Soc. Am. A 7, 305–311 (1990). [CrossRef]
  15. M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535–1544 (2000). [CrossRef]
  16. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000). [CrossRef]
  17. J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002). [CrossRef]
  18. M. A. Webster, “Adaptation and visual coding,” J. Vis. 11 (5), 3 (2011). [CrossRef]
  19. C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. Physiol. 203, 237–260 (1969).
  20. A. S. Gilinsky, “Orientation-specific effects of patterns of adapting light on visual acuity,” J. Opt. Soc. Am. 58, 13–18 (1968). [CrossRef]
  21. C. Blakemore, J. P. Muncey, and R. M. Ridley, “Stimulus specificity in the human visual system,” Vis. Res. 13, 1915–1931 (1973). [CrossRef]
  22. M. A. Georgeson, “The effect of spatial adaptation on perceived contrast,” Spat. Vis. 1, 103–112 (1985). [CrossRef]
  23. R. J. Snowden and S. T. Hammett, “Subtractive and divisive adaptation in the human visual system,” Nature 355, 248–250 (1992). [CrossRef]
  24. M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994). [CrossRef]
  25. P. J. Bex, S. G. Solomon, and S. C. Dakin, “Contrast sensitivity in natural scenes depends on edge as well as spatial frequency structure,” J. Vis. 9 (10), 1 (2009). [CrossRef]
  26. M. A. Webster and E. Miyahara, “Contrast adaptation and the spatial structure of natural images,” J. Opt. Soc. Am. A 14, 2355–2366 (1997). [CrossRef]
  27. M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997). [CrossRef]
  28. A. Bradley, E. Switkes, and K. De Valois, “Orientation and spatial frequency selectivity of adaptation to color and luminance gratings,” Vis. Res. 28, 841–856 (1988). [CrossRef]
  29. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982). [CrossRef]
  30. M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991). [CrossRef]
  31. M. A. Webster and D. Leonard, “Adaptation and perceptual norms in color vision,” J. Opt. Soc. Am. A 25, 2817–2825 (2008). [CrossRef]
  32. D. G. Albrecht and D. B. Hamilton, “Striate cortex of monkey and cat: contrast response function,” J. Neurophysiol. 48, 217–237 (1982).
  33. S. N. Yendrikhovskij, F. J. J. Blommaert, and H. de Ridder, “Color reproduction and the naturalness constraint,” Color Res. Appl. 24, 52–67 (1999). [CrossRef]
  34. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A 7, 2032–2040 (1990). [CrossRef]
  35. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987). [CrossRef]
  36. C. A. Párraga, T. Troscianko, and D. J. Tolhurst, “Spatiochromatic properties of natural images and human vision,” Curr. Biol. 12, 483–487 (2002). [CrossRef]
  37. E. Switkes and M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vis. Res. 39, 1823–1831 (1999). [CrossRef]
  38. E. Switkes, “Contrast salience across three-dimensional chromoluminance space,” Vis. Res. 48, 1812–1819 (2008). [CrossRef]
  39. M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vis. Res. 40, 3801–3816 (2000). [CrossRef]
  40. M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network, 213–233 (2007). [CrossRef]
  41. F. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10 (10), 13 (2010). [CrossRef]
  42. D. H. Brainard, “Cone contrast and opponent modulation color spaces,” in Human Color Vision, Kaiser and R. M. Boynton, eds. (Optical Society of America, 1996), pp. 563–579.
  43. B. C. Regan and J. D. Mollon, “The relative salience of the cardinal axes of colour space in normal and anomalous trichromats,” in Colour Vision DeficienciesC. R. Cavonius, ed. (Kluwer, 1997), pp. 261–270.
  44. B. Singer and M. D’Zmura, “Color contrast induction,” Vis. Res. 34, 3111–3126 (1994). [CrossRef]
  45. D. J. Heeger, “Normalization of cell responses in cat striate cortex,” Vis. Neurosci. 9, 181–197 (1992). [CrossRef]
  46. C. Chubb, G. Sperling, and J. A. Solomon, “Texture interactions determine perceived contrast,” Proc. Natl. Acad. Sci. USA 86, 9631–9635 (1989). [CrossRef]
  47. V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005). [CrossRef]
  48. J. S. Lauritzen and D. J. Tolhurst, “Contrast constancy in natural scenes in shadow or direct light: a proposed role for contrast-normalisation (non-specific suppression) in visual cortex,” Network 16, 151–173 (2005). [CrossRef]
  49. M. A. Webster, “Human colour perception and its adaptation,” Netw. Comput. Neural Syst. 7, 587–634 (1996). [CrossRef]
  50. A. Kohn, “Visual adaptation: physiology, mechanisms, and functional benefits,” J. Neurophysiol. 97, 3155–3164 (2007). [CrossRef]
  51. D. Chander and E. J. Chichilnisky, “Adaptation to temporal contrast in primate and salamander retina,” J. Neurosci. 21, 9904–9916 (2001).
  52. S. A. Baccus and M. Meister, “Fast and slow contrast adaptation in retinal circuitry,” Neuron 36, 909–919 (2002). [CrossRef]
  53. R. M. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retin. Res. 3, 263–343 (1984). [CrossRef]
  54. S. M. Smirnakis, M. J. Berry, D. K. Warland, W. Bialek, and M. Meister, “Adaptation of retinal processing to image contrast and spatial scale,” Nature 386, 69–73 (1997). [CrossRef]
  55. B. Wark, B. N. Lundstrom, and A. Fairhall, “Sensory adaptation,” Curr. Opin. Neurobiol. 17, 423–429 (2007). [CrossRef]
  56. S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004). [CrossRef]
  57. P. Zhang, M. Bao, M. Kwon, S. He, and S. A. Engel, “Effects of orientation-specific visual deprivation induced with altered reality,” Curr. Biol. 19, 1956–1960 (2009). [CrossRef]
  58. M. Kwon, G. E. Legge, F. Fang, A. M. Cheong, and S. He, “Adaptive changes in visual cortex following prolonged contrast reduction,” J. Vis. 9 (2), 20 (2009). [CrossRef]
  59. M. A. Hietanen, S. L. Cloherty, C. W. Clifford, and M. R. Ibbotson, “Differential changes in perceived contrast following contrast adaptation in humans,” Vis. Res. 50, 12–19 (2010). [CrossRef]
  60. I. Fine, D. I. MacLeod, and G. M. Boynton, “Surface segmentation based on the luminance and color statistics of natural scenes,” J. Opt. Soc. Am. A 20, 1283–1291 (2003). [CrossRef]
  61. T. Hansen and K. R. Gegenfurtner, “Independence of color and luminance edges in natural scenes,” Vis. Neurosci. 26, 35–49 (2009). [CrossRef]
  62. A. P. Johnson, F. A. Kingdom, and C. L. Baker, “Spatiochromatic statistics of natural scenes: first- and second-order information and their correlational structure,” J. Opt. Soc. Am. A 22, 2050–2059 (2005). [CrossRef]
  63. R. M. Boynton, M. M. Hayhoe, and D. I. A. MacLeod, “The gap effect: chromatic and achromatic visual discrimination as affected by field separation,” J. Mod. Opt. 24, 159–177 (1977). [CrossRef]
  64. R. T. Eskew, C. F. Stromeyer, C. J. Picotte, and R. E. Kronauer, “Detection uncertainty and the facilitation of chromatic detection by luminance contours,” J. Opt. Soc. Am. A 8, 394–403 (1991). [CrossRef]
  65. K. K. De Valois and E. Switkes, “Simultaneous masking interactions between chromatic and luminance gratings, ” J. Opt. Soc. Am. 73, 11–18 (1983). [CrossRef]
  66. E. Switkes, A. Bradley, and K. K. De Valois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. A 5, 1149–1162(1988). [CrossRef]
  67. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements,” Vis. Res. 40, 773–788 (2000). [CrossRef]
  68. K. T. Mullen and M. A. Losada, “Evidence for separate pathways for color and luminance detection mechanisms,” J. Opt. Soc. Am. A 11, 3136–3151 (1994). [CrossRef]
  69. S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psych. 59, 143–166 (2008). [CrossRef]
  70. F. A. Kingdom and R. Kasrai, “Colour unmasks dark targets in complex displays,” Vis. Res. 46, 814–822 (2006). [CrossRef]
  71. G. E. Legge and J. M. Foley, “Contrast masking in human vision,” J. Opt. Soc. Am. 70, 1458–1471 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited