OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. III. Synthetic study of continuous-wave photon fluence rate along unique spiral paths

Anqi Zhang, Daqing Piao, and Charles F. Bunting  »View Author Affiliations


JOSA A, Vol. 29, Issue 4, pp. 545-558 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000545


View Full Text Article

Enhanced HTML    Acrobat PDF (1223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This is Part III of the work that examines photon diffusion in a scattering-dominant medium enclosed by a “concave” circular cylindrical applicator or enclosing a “convex” circular cylindrical applicator. In Part II of this work Zhang et al. [J. Opt. Soc. Am. A 28, 66 (2011)] predicted that, on the tissue-applicator interface of either “concave” or “convex” geometry, there exists a unique set of spiral paths, along which the steady-state photon fluence rate decays at a rate equal to that along a straight line on a planar semi-infinite interface, for the same line-of-sight source–detector distance. This phenomenon of steady-state photon diffusion is referred to as “straight-line-resembling-spiral paths” (abbreviated as “spiral paths”). This Part III study develops analytic approaches to the spiral paths associated with geometry of a large radial dimension and presents spiral paths found numerically for geometry of a small radial dimension. This Part III study also examines whether the spiral paths associated with a homogeneous medium are a good approximation for the medium containing heterogeneity. The heterogeneity is limited to an anomaly that is aligned azimuthally with the spiral paths and has either positive or negative contrast of the absorption or scattering coefficient over the background medium. For a weak-contrast anomaly the perturbation by it to the photon fluence rate along the spiral paths is found by applying a well-established perturbation analysis in cylindrical coordinates. For a strong-contrast anomaly the change by it to the photon fluence rate along the spiral paths is computed using the finite-element method. For the investigated heterogeneous-medium cases the photon fluence rate along the homogeneous-medium associated spiral paths is macroscopically indistinguishable from, and microscopically close to, that along a straight line on a planar semi-infinite interface.

© 2012 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 28, 2011
Revised Manuscript: November 30, 2011
Manuscript Accepted: December 1, 2011
Published: March 22, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Anqi Zhang, Daqing Piao, and Charles F. Bunting, "Photon diffusion in a homogeneous medium bounded externally or internally by an infinitely long circular cylindrical applicator. III. Synthetic study of continuous-wave photon fluence rate along unique spiral paths," J. Opt. Soc. Am. A 29, 545-558 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-29-4-545

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited