OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Extension of the Stokes equation for layered constructions to fluorescent turbid media

Ludovic G. Coppel, Magnus Neuman, and Per Edström  »View Author Affiliations


JOSA A, Vol. 29, Issue 4, pp. 574-578 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000574


View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Expressions relating the bispectral reflectance of a stack of n fluorescing layers to each individual layer’s reflectance and transmittance are derived. This theoretical framework is used together with recently proposed extensions of the Kubelka–Munk model to study the fluorescence from layered turbid media. For one layer over a reflecting background, the model is shown to give the same results as a previous model. The extension to n layers with different optical properties allows simulating the bispectral reflectance from a pad of layered turbid media. The applicability of the model is exemplified with an optimization of fluorophore distribution in layered turbid media.

© 2012 Optical Society of America

OCIS Codes
(260.2510) Physical optics : Fluorescence
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(330.1690) Vision, color, and visual optics : Color

ToC Category:
Physical Optics

History
Original Manuscript: January 3, 2012
Manuscript Accepted: January 20, 2012
Published: March 22, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Ludovic G. Coppel, Magnus Neuman, and Per Edström, "Extension of the Stokes equation for layered constructions to fluorescent turbid media," J. Opt. Soc. Am. A 29, 574-578 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-29-4-574


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Swartling, A. Pifferi, A. M. K. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A 20, 714–727 (2003). [CrossRef]
  2. D. Y. Churmakov, I. V. Meglinski, S. A. Piletsky, and D. A. Greenhalgh, “Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation,” J. Phys. D: Appl. Phys. 36, 1722–1728 (2003). [CrossRef]
  3. T. Shakespeare and J. Shakespeare, “A fluorescent extension to the Kubelka-Munk model,” Color Res. Appl. 28, 4–14(2003). [CrossRef]
  4. A. Liebert, H. Wabnitz, N. Zolek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express 16, 13188–13202 (2008). [CrossRef]
  5. L. G. Coppel, P. Edström, and M. Lindquister, “Open source Monte Carlo simulation platform for particle level simulation of light scattering from generated paper structures,” in Paper Making Research SymposiumE. Madetoja, H. Niskanen, and J. Hämäläinen, eds. (Kuopio University, 2009), http://miun.diva-portal.org/smash/get/diva2:222641/FULLTEXT01.
  6. S. D. Howison and R. J. Lawrence, “Fluorescent transfer of light in dyed materials,” SIAM J. Appl. Math. 53, 447–458(1993). [CrossRef]
  7. P. Kubelka, “New contributions to the optics of intensely light-scattering materials. part 1,” J. Opt. Soc. Am. 38, 448–457(1948). [CrossRef]
  8. P. Kubelka, “New contributions of the optics of intensely light-scattering materials. part 2: nonhomogeneous layers,” J. Opt. Soc. Am. 44, 330–335 (1954). [CrossRef]
  9. A. A. Kokhanovsky, “Radiative properties of optically thick fluorescent turbid media,” J. Opt. Soc. Am. A 26, 1896–1900 (2009). [CrossRef]
  10. A. A. Kokhanovsky, “Radiative properties of optically thick fluorescent turbid media: errata,” J. Opt. Soc. Am. A 27, 2084 (2010). [CrossRef]
  11. J. M. Schmitt, G. X. Zhou, and E. C. Walker, “Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am. A 7, 2141–2153 (1990). [CrossRef]
  12. M. Keijzner, W. M. Star, and P. R. M. Storchi, “Optical diffusion in layered media,” Appl. Opt. 27, 1820–1824 (1988). [CrossRef]
  13. J. Ripoll, V. Ntziachristos, J. P. Culver, D. N. Pattanayak, A. G. Yodh, and M. Nieto-Vesperinas, “Recovery of optical parameters in multple-layered diffusive media: theory and experiments,” J. Opt. Soc. Am. A 18, 821–830 (2001). [CrossRef]
  14. D. Yudovsky and L. Pilon, “Modeling the local excitation fluence rate and fluorescence emission in absorbing and strongly scattering multilayered media,” Appl. Opt. 49, 6072–6084 (2010). [CrossRef]
  15. L. Simonot, M. Thoury, and J. Delaney, “Extension of the Kubelka–Munk theory for fluorescent turbid media to a nonopaque layer on a background,” J. Opt. Soc. Am. A 28, 1349–1357 (2011). [CrossRef]
  16. L. G. Coppel, M. Andersson, and P. Edström, “Determination of quantum efficiency in fluorescing turbid media,” Appl. Opt. 50, 2784–2792 (2011). [CrossRef]
  17. G. G. Stokes, “On the intensity of the light reflected from or transmitted through a pile of plates,” Proc. R. Soc. London 11, 545–556 (1860). [CrossRef]
  18. J. C. Zwinkels and F. Gauthier, “Instrumentation, standards, and procedures used at the National Research Council of Canada for high-accuracy fluorescence measurements,” Anal. Chim. Acta 380, 193–209 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited