OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Electromagnetic imaging within the contrast-source formulation by means of the multiscaling inexact Newton method

Giacomo Oliveri, Andrea Randazzo, Matteo Pastorino, and Andrea Massa  »View Author Affiliations


JOSA A, Vol. 29, Issue 6, pp. 945-958 (2012)
http://dx.doi.org/10.1364/JOSAA.29.000945


View Full Text Article

Enhanced HTML    Acrobat PDF (1358 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a new imaging technique that integrates the inexact Newton method into a multifocusing scheme within the contrast-source formulation of the inverse scattering problem. Representative results from an extensive validation concerned with both synthetic and experimental scattering data are reported to assess, also through comparisons, advantages and limitations of the proposed approach in terms of accuracy, robustness, and computational efficiency.

© 2012 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.6950) Image processing : Tomographic image processing
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.3200) Scattering : Inverse scattering
(350.4010) Other areas of optics : Microwaves

ToC Category:
Image Processing

History
Original Manuscript: January 23, 2012
Manuscript Accepted: February 12, 2012
Published: May 22, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Giacomo Oliveri, Andrea Randazzo, Matteo Pastorino, and Andrea Massa, "Electromagnetic imaging within the contrast-source formulation by means of the multiscaling inexact Newton method," J. Opt. Soc. Am. A 29, 945-958 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-29-6-945


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer-Verlag, 1998).
  2. G. C. Giakos, M. Pastorino, F. Russo, S. Chiwdhury, N. Shah, and W. Davros, “Noninvasive imaging for the new century,” IEEE Instrum. Meas. Mag. 2 (2), 32–35 (1999). [CrossRef]
  3. R. Zoughi, Microwave Nondestructive Testing and Evaluation (Kluwer Academic, 2000).
  4. D. Lesselier and J. Bowler, “Foreword to the special section on electromagnetic and ultrasonic nondestructive evaluation,” Inverse Probl. 18 (2002). [CrossRef]
  5. S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation—overview and recent advances,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007). [CrossRef]
  6. O. Dorn and D. Lesselier, “Introduction to the special issue on electromagnetic inverse problems: emerging methods and novel applications,” Inverse Probl. 26, 070201 (2010). [CrossRef]
  7. C.-C. Chen, J. T. Johnson, M. Sato, and A. G. Yarovoy, “Foreword to the special issue on subsurface sensing using ground-penetrating radar,” IEEE Trans. Geosci. Remote Sens. 45, 2419–2421 (2007). [CrossRef]
  8. E. Bermani, A. Boni, S. Caorsi, and A. Massa, “An innovative real-time technique for buried object detection,” IEEE Trans. Geosci. Remote Sens. 41, 927–931 (2003). [CrossRef]
  9. A. Baussard, E. L. Miller, and D. Lesselier, “Adaptive multiscale reconstruction of buried objects,” Inverse Probl. 20, S1–S15 (2004). [CrossRef]
  10. A. Massa, M. Pastorino, and A. Randazzo, “Reconstruction of two-dimensional buried objects by a hybrid differential evolution method,” Inverse Probl. 20, S135–S150 (2004). [CrossRef]
  11. C.-H. Kuo and M. Moghaddam, “Electromagnetic scattering from a buried cylinder in layered media with rough interfaces,” IEEE Trans. Antennas Propag. 54, 2392–2401 (2006). [CrossRef]
  12. A. Bréard, G. Perrusson, and D. Lesselier, “Hybrid differential evolution and retrieval of buried spheres in subsoil,” IEEE Geosci. Remote Sens. Lett. 5, 788–792 (2008). [CrossRef]
  13. M. El-Shenawee, O. Dorn, and M. Moscoso, “An adjoint-field technique for shape reconstruction of 3-D penetrable object immersed in lossy medium,” IEEE Trans. Antennas Propag. 57, 520–534 (2009). [CrossRef]
  14. A. Tabatabaeenejad and M. Moghaddam, “Inversion of subsurface properties of layered dielectric structures with random slightly rough interfaces using the method of simulated annealing,” IEEE Trans. Geosci. Remote Sens. 47, 2035–2046 (2009). [CrossRef]
  15. P. M. Meaney, M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, “A clinical prototype for active microwave imaging of the breast,” IEEE Trans. Microw. Theory Technol. 48, 1841–1853 (2000). [CrossRef]
  16. S. Caorsi, A. Massa, and M. Pastorino, “Numerical assessment concerning a focused microwave diagnostic method for medical applications,” IEEE Trans. Microw. Theory Technol. 48, 1815–1830 (2000). [CrossRef]
  17. Z. Q. Zhang and Q. H. Liu, “Three-dimensional nonlinear image reconstruction for microwave biomedical imaging,” IEEE Trans. Biomed. Eng. 51, 544–548 (2004). [CrossRef]
  18. M. El-Shenawee and E. Miller, “Spherical harmonics microwave algorithm for shape and location reconstruction of breast cancer tumors,” IEEE Trans. Med. Imag. 25, 1258–1271(2006). [CrossRef]
  19. T. Rubk, P. M. Meaney, P. Meincke, and K. D. Paulsen, “Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton’s method and the CGLS inversion algorithm,” IEEE Trans. Antennas Propag. 55, 2320–2331 (2007). [CrossRef]
  20. H. Zhou, T. Takenaka, J. Johnson, and T. Tanaka, “Breast imaging model using microwaves and a time domain three dimensional reconstruction method,” Progr. Electromagn. Res. 93, 57–70 (2009). [CrossRef]
  21. J. E. Johnson, T. Takenaka, K. Ping, S. Honda, and T. Tanaka, “Advances in the 3-D forward-backward time-stepping (FBTS) inverse scattering technique for breast cancer detection,” IEEE Trans. Biomed. Eng. 56, 2232–2243 (2009). [CrossRef]
  22. G. Bozza and M. Brignone, “Application of the no-sampling linear sampling method to breast cancer detection,” IEEE Trans. Biomed. Eng. 57, 2525–2534 (2010). [CrossRef]
  23. M. A. Ali and M. Moghaddam, “3D nonlinear super-resolution microwave inversion technique using time-domain data,” IEEE Trans. Antennas Propag. 58, 2327–2336 (2010). [CrossRef]
  24. J. D. Shea, P. Kosmas, B. D. Van Veen, and S. C. Hagness, “Contrast-enhanced microwave imaging of breast tumors: a computational study using 3D realistic numerical phantoms,” Inverse Probl. 26, 074009 (2010). [CrossRef]
  25. G. Bellizzi, O. Bucci, and I. Catapano, “Microwave cancer imaging exploiting magnetic nanoparticles as contrast agent,” IEEE Trans. Biomed. Eng. 58, 2528–2536 (2011). [CrossRef]
  26. H. Harada, D. J. N. Wall, T. Takenaka, and T. Tanaka, “Conjugate gradient method applied to inverse scattering problems,” IEEE Trans. Antennas Propag. 43, 784–792 (1995). [CrossRef]
  27. P. M. van Den Berg and A. Abubakar, “Contrast source inversion method: state of the art,” Progr. Electromagn. Res. 34, 189–218 (2001). [CrossRef]
  28. T. Takenaka, H. Zhou, and T. Tanaka, “Inverse scattering for a three-dimensional object in the time domain,” J. Opt. Soc. Am. A 20, 1867–1874 (2003). [CrossRef]
  29. T. M. Habashy and A. Abubakar, “A general framework for constraint minimization for the inversion of electromagnetic measurements,” Progr. Electromagn. Res. 46, 265–312 (2004). [CrossRef]
  30. M. Pastorino, “Stochastic optimization methods applied to microwave imaging: a review,” IEEE Trans. Antennas Propag. 55, 538–548 (2007). [CrossRef]
  31. I. T. Rekanos, “Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization,” IEEE Trans. Geosci. Remote Sens. 46, 1967–1974 (2008). [CrossRef]
  32. A. Semnani, M. Kamyab, and I. T. Rekanos, “Reconstruction of one-dimensional dielectric scatterers using differential evolution and particle swarm optimization,” IEEE Geosci. Remote Sens. Lett. 6, 671–675 (2009). [CrossRef]
  33. P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25, 123003 (2009). [CrossRef]
  34. A. Semnani, I. T. Rekanos, M. Kamyab, and T. G. Papadopoulos, “Two-dimensional microwave imaging based on hybrid scatterer representation and differential evolution,” IEEE Trans. Antennas Propag. 58, 3289–3298 (2010). [CrossRef]
  35. P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag. 53(1), 38–49 (2011). [CrossRef]
  36. O. Dorn and D. Lesselier, “Level set methods for inverse scattering,” Inverse Probl. 22, R67–R131 (2006). [CrossRef]
  37. A. Litman, D. Lesselier, and F. Santosa, “Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set,” Inverse Probl. 14, 685–706 (1998). [CrossRef]
  38. R. Ferraye, J. Y. Dauvignac, and Ch. Pichot, “Reconstruction of complex and multiple shape object contours using a level set method,” J. Electromagn. Waves Appl. 17, 153–181 (2003). [CrossRef]
  39. R. Ferraye, J. Y. Dauvignac, and Ch. Pichot, “An inverse scattering method based on contour deformations by means of a level set method using frequency hopping technique,” IEEE Trans. Antennas Propag. 51, 1100–1113 (2003). [CrossRef]
  40. M. R. Hajihashemi and M. El-Shenawee, “Shape reconstruction using the level set method for microwave applications,” IEEE Antennas Wirel. Propag. Lett. 7, 92–96 (2008). [CrossRef]
  41. M. Benedetti, D. Lesselier, M. Lambert, and A. Massa, “Multiple shapes reconstruction by means of multi-region level sets,” IEEE Trans. Geosci. Remote Sens. 48, 2330–2342 (2010). [CrossRef]
  42. M. R. Hajihashemi and M. El-Shenawee, “Inverse scattering of three-dimensional PEC objects using the level-set method,” Progr. Electromagn. Res. 116, 23–47 (2011). [CrossRef]
  43. M. R. Hajihashemi and M. El-Shenawee, “Level set algorithm for shape reconstruction of nonoverlapping three-dimensional penetrable targets,” IEEE Trans. Geosci. Remote Sens. 50, 75–86 (2012). [CrossRef]
  44. D. Colton, H. Haddar, and M. Piana, “The linear sampling method in inverse electromagnetic scattering theory,” Inverse Probl. 19, S105–S137 (2003). [CrossRef]
  45. I. Catapano, L. Crocco, and T. Isernia, “On simple methods for shape reconstruction of unknown scatterers,” IEEE Trans. Antennas Propag. 55, 1431–1436 (2007). [CrossRef]
  46. R. Aramini, G. Caviglia, A. Massa, and M. Piana, “The linear sampling method and energy conservation,” Inverse Probl. 26, 055004 (2010). [CrossRef]
  47. X. Zhang, H. Tortel, S. Ruy, and A. Litman, “Microwave imaging of soil water diffusion using the linear sampling method,” IEEE Geosci. Remote Sens. Lett. 8, 421–425 (2011). [CrossRef]
  48. A. Franchois and C. Pichot, “Microwave imaging-complex permittivity reconstruction with a Levenberg–Marquardt method,” IEEE Trans. Antennas Propag. 45, 203–215 (1997). [CrossRef]
  49. X. Chen, “Signal-subspace method approach to the intensity-only electromagnetic inverse scattering problem,” J. Opt. Soc. Am. A 25, 2018–2024 (2008). [CrossRef]
  50. X. Chen, “Application of signal-subspace and optimization methods in reconstructing extended scatterers,” J. Opt. Soc. Am. A26, 1022–1026 (2009). [CrossRef]
  51. L. Pan, K. Agarwal, Y. Zhong, S. Yeo, and X. Chen, “Subspace-based optimization method for reconstructing extended scatterers: transverse electric case,” J. Opt. Soc. Am. A 26, 1932–1937 (2009). [CrossRef]
  52. L. Pan, X. Chen, Y. Zhong, and S. Yeo, “Comparison among the variants of subspace-based optimization method for addressing inverse scattering problems: transverse electric case,” J. Opt. Soc. Am. A 27, 2208–2215 (2010). [CrossRef]
  53. Y. Zhong, X. Chen, and K. Agarwal, “An improved subspace-based optimization method and its implementation in solving three-dimensional inverse problems,” IEEE Trans. Geosci. Remote Sens. 48, 3763–3768 (2010). [CrossRef]
  54. G. Oliveri, Y. Zhong, X. Chen, and A. Massa, “Multiresolution subspace-based optimization method for inverse scattering problems,” J. Opt. Soc. Am. A 28, 2057–2069 (2011). [CrossRef]
  55. J. De Zaeytijd, A. Franchois, C. Eyraud, and J.-M. Geffrin, “Full-wave three-dimensional microwave imaging with a regularized Gauss-Newton method: theory and experiment,” IEEE Trans. Antennas Propag. 55, 3279–3292 (2007). [CrossRef]
  56. C. Gilmore, P. Mojabi, and J. LoVetri, “Comparison of an enhanced distorted Born iterative method and the multiplicative-regularized contrast source inversion method,“ IEEE Trans. Antennas Propag. 57, 2341–2351 (2009). [CrossRef]
  57. C. Eyraud, J. Geffrin, and A. Litman, “3D-aggregate quantitative imaging: experimental results and polarization effects,” IEEE Trans. Antennas Propag. 59, 1237–1244 (2011). [CrossRef]
  58. O. Bucci, N. Cardace, L. Crocco, and T. Isernia, “Degree of nonlinearity and a new solution procedure in scalar two-dimensional inverse scattering problems,” J. Opt. Soc. Am. A 18, 1832–1843 (2001). [CrossRef]
  59. T. Isernia, V. Pascazio, and R. Pierri, “On the local minima in a tomographic imaging technique,” IEEE Trans. Geosci. Remote Sens. 39, 1596–1607 (2001). [CrossRef]
  60. P. Lobel, L. Blanc-Feraud, C. Pichot, and M. Barlaud, “A new regularization scheme for inverse scattering,” Inverse Probl. 13, 403–410 (1997). [CrossRef]
  61. P. Mojabi and J. LoVetri, “Overview and classification of some regularization techniques for the Gauss–Newton inversion method applied to inverse scattering problems,” IEEE Trans. Antennas Propag. 57, 2658–2665 (2009). [CrossRef]
  62. R. Autieri, G. Ferraiuolo, and V. Pascazio, “Bayesian regularization in nonlinear imaging: reconstructions from experimental data in nonlinearized microwave tomography,” IEEE Trans. Geosci. Remote Sens. 49, 801–813 (2011). [CrossRef]
  63. A. Zakaria and J. LoVetri, “Application of multiplicative regularization to the finite element contrast source inversion method,” IEEE Trans. Antennas Propag. 59, 3495–3498 (2011). [CrossRef]
  64. L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” Am. J. Math. 73, 615–624 (1951). [CrossRef]
  65. I. T. Rekanos, S. M. Panas, and T. D. Tsiboukis, “Microwave imaging using the finite element method and a sensitivity analysis approach,” IEEE Trans. Med. Imag. 18, 1108–1114 (1999). [CrossRef]
  66. C. Estatico, G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, “A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data,” Inverse Probl. 21, S81–S94 (2005). [CrossRef]
  67. G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “An inexact Newton method for microwave reconstruction of strong scatterers,” IEEE Antennas Wirel. Propag. Lett. 5, 61–64 (2006). [CrossRef]
  68. G. Bozza, C. Estatico, A. Massa, M. Pastorino, and A. Randazzo, “Short-range image-based method for the inspection of strong scatterers using microwaves,” IEEE Trans. Instrum. Meas. 56, 1181–1188 (2007). [CrossRef]
  69. G. Oliveri, L. Lizzi, M. Pastorino, and A. Massa, “A nested multi-scaling inexact-Newton iterative approach for microwave imaging,” IEEE Trans. Antennas Propag. 60, 971–983 (2012). [CrossRef]
  70. G. Oliveri, A. Randazzo, M. Pastorino, and A. Massa, “Imaging of separate scatterers by means of a multiscaling multiregion inexact-Newton approach,” Progr. Electromagn. Res. 18, 247–257 (2011). [CrossRef]
  71. G. Oliveri, A. Randazzo, M. Pastorino, and A. Massa, “Electromagnetic inversion with the multiscaling inexact Newton method—experimental validation,” Microw. Opt. Technol. Lett. 53, 2834–2838 (2011). [CrossRef]
  72. S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microw. Theory Technol. 51, 1162–1173 (2003). [CrossRef]
  73. S. Caorsi, M. Donelli, and A. Massa, “Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method,” IEEE Trans. Microw. Theory Technol. 52, 1217–1228 (2004). [CrossRef]
  74. G. Franceschini, D. Franceschini, and A. Massa, “Full-vectorial three-dimensional microwave imaging through the iterative multi-scaling strategy—a preliminary assessment,” IEEE Geosci. Remote Sens. Lett. 2, 428–432 (2005). [CrossRef]
  75. O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antennas Propag. 37, 918–926 (1989). [CrossRef]
  76. G. Bozza and M. Pastorino, “An inexact Newton-based approach to microwave imaging within the contrast source formulation,” IEEE Trans. Antennas Propag. 57, 1122–1132 (2009). [CrossRef]
  77. A time-dependence ej2πft, f being the working frequency, is assumed and omitted hereinafter.
  78. D. Franceschini, A. Massa, M. Pastorino, and A. Zanetti, “Multi-resolution iterative inversion of real inhomogeneous targets,” Inverse Probl. 21, S51–S64 (2005). [CrossRef]
  79. J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross shape,” IEEE Trans. Antennas Propag. 13, 334–341 (1965). [CrossRef]
  80. K. Belkebir and M. Saillard, Special Section: “Testing inversion algorithms against experimental data,” Inverse Probl. 17, 1565–1571 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited