OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

Spectral sharpening by spherical sampling

Graham D. Finlayson, Javier Vazquez-Corral, Sabine Süsstrunk, and Maria Vanrell  »View Author Affiliations


JOSA A, Vol. 29, Issue 7, pp. 1199-1210 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001199


View Full Text Article

Enhanced HTML    Acrobat PDF (702 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading “von Kries adaptation”: the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called “sharp sensors.” In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art.

© 2012 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1710) Vision, color, and visual optics : Color, measurement
(330.1720) Vision, color, and visual optics : Color vision

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: January 3, 2012
Manuscript Accepted: March 4, 2012
Published: June 4, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Graham D. Finlayson, Javier Vazquez-Corral, Sabine Süsstrunk, and Maria Vanrell, "Spectral sharpening by spherical sampling," J. Opt. Soc. Am. A 29, 1199-1210 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-29-7-1199


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. T. Maloney and B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986). [CrossRef]
  2. D. H. Marimont and B. A. Wandell, “Linear models of surface and illuminant spectra,” J. Opt. Soc. Am. A 9, 1905–1913(1992). [CrossRef]
  3. J. Park, M. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral imaging using multiplexed illumination,” International Conference on Computer Vision (2007).
  4. D. A. Forsyth, “A novel algorithm for color constancy,” Int. J. Comput. Vis. 5, 5–35 (1990). [CrossRef]
  5. J. A. Worthey and M. H. Brill, “Heuristic analysis of von Kries color constancy,” J. Opt. Soc. Am. A 3, 1708–1712 (1986). [CrossRef]
  6. E. Land, “The retinex,” Am. Sci. 52, 247–264 (1964).
  7. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975). [CrossRef]
  8. G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  9. K. Barnard, L. Martin, B. Funt, and A. Coath, “A data set for colour research,” Color Res. Appl. 27, 147–151 (2002). [CrossRef]
  10. G. D. Finlayson, M. S. Drew, and B. V. Funt, “Color constancy: enhancing von Kries adaptation via sensor transformation,” in Human Vision, Visual Processing, and Digital Display IV (1993), pp. 473–484.
  11. G. D. Finlayson, M. S. Drew, and B. V. Funt, “Spectral sharpening: sensor transformations for improved color constancy,” J. Opt. Soc. Am. A 11, 1553–1563 (1994). [CrossRef]
  12. G. D. Finlayson, M. S. Drew, and B. V. Funt, “Color constancy: generalized diagonal transforms suffice,” J. Opt. Soc. Am. A 11, 3011–3019 (1994). [CrossRef]
  13. G. Finlayson, “Coefficient colour constancy,” Ph.D. thesis (Simon Fraser University, 1995).
  14. J. Schanda, CIE Colorimetry (Wiley, 2007), pp. 25–78.
  15. J. von Kries, Sources of Color Science (MIT Press, 1970), pp. 110–119.
  16. S. K. Nayar and R. M. Bolle, “Reflectance based object recognition,” Int. J. Comput. Vis. 17, 219–240 (1996). [CrossRef]
  17. B. V. Funt and G. D. Finlayson, “Color constant color indexing,” IEEE Trans. Pattern Anal. Machine Intell. 17, 522–529(1995). [CrossRef]
  18. M. S. Drew and G. D. Finlayson, “Multispectral processing without spectra,” J. Opt. Soc. Am. A 20, 1181–1193 (2003). [CrossRef]
  19. H. Chong, S. Gortler, and T. Zickler, “The von Kries hypothesis and a basis for color constancy,” in International Conference on Computer Vision (2007).
  20. K. Lam, “Metamerism and colour constancy,” Ph.D. thesis (University of Bradford, 1985).
  21. M. D. Fairchild, Color Appearance Models, 2nd ed (Wiley-IST, 2005).
  22. Y. V. der Haeghen and J. M. Naeyaert, “Consistent cutaneous imaging with commercial digital cameras,” Arch. Dermatol. 142, 42–46 (2006). [CrossRef]
  23. E. Chorro, E. Perales, D. de Fez, M. J. Luque, and F. M. Martínez-Verdú, “Application of the S-CIELAB color model to processed and calibrated images with a colorimetric dithering method,” Opt. Express 15, 7810–7817 (2007). [CrossRef]
  24. G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. (Johns Hopkins University, 1996).
  25. J. E. Gibson, M. D. Fairchild, and S. L. Wright, “Colorimetric tolerances of various digital image displays,” in Color Imaging Conference’00 (IS&T, 2000), pp. 295–300.
  26. L. Lovisolo and E. da Silva, “Uniform distribution of points on a hyper-sphere with applications to vector bit-plane encoding,” IEE Proc. Vis. Image Signal Process. 148, 187–193 (2001). [CrossRef]
  27. J. C. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998). [CrossRef]
  28. M. S. Drew and G. D. Finlayson, “Spectral sharpening with positivity,” J. Opt. Soc. Am. A 17, 1361–1370 (2000). [CrossRef]
  29. M. Vrhel, R. Gershon, and L. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited