OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

Enlightening darkness to diffraction limit and beyond: comparison and optimization of different polarizations for dark spot generation

Svetlana N. Khonina and Ilya Golub  »View Author Affiliations

JOSA A, Vol. 29, Issue 7, pp. 1470-1474 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1450 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compare generation of a dark spot using focusing of beams with azimuthal polarizion, radial polarization with a vortex, and a circular polarization with either a first or second order vortex. By optimization of the amplitude-phase pupil, it is ascertained that azimuthal polarization is the most suitable one to obtain the diffraction bounded dark spot per se whose scalar approximation limit has FWHM = 0.29 λ . Consequently, for dark spot generation, this polarization plays the role of the radial polarization in creation of the diffraction-limited bright spot. Using azimuthal polarization, it is shown that an amplitude-phase filter allows generation of a subdiffractive dark spot in a prescribed finite area.

© 2012 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(180.0180) Microscopy : Microscopy
(210.0210) Optical data storage : Optical data storage
(260.0260) Physical optics : Physical optics
(260.5430) Physical optics : Polarization
(350.5730) Other areas of optics : Resolution

ToC Category:
Physical Optics

Original Manuscript: January 27, 2012
Revised Manuscript: April 9, 2012
Manuscript Accepted: May 3, 2012
Published: June 29, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Svetlana N. Khonina and Ilya Golub, "Enlightening darkness to diffraction limit and beyond: comparison and optimization of different polarizations for dark spot generation," J. Opt. Soc. Am. A 29, 1470-1474 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]
  2. T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32, 976–978 (2007). [CrossRef]
  3. Y. Kozawa and S. Sato, “Sharper focal spot formed by higher-order radially polarized laser beams,” J. Opt. Soc. Am. A 24, 1793–1798 (2007). [CrossRef]
  4. V. Kalosha and I. Golub, “Toward the subdiffraction focusing limit of optical superresolution,” Opt. Lett. 32, 3540–3542 (2007). [CrossRef]
  5. G. M. Lerman and V. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16, 4567–4581 (2008). [CrossRef]
  6. S. N. Khonina and I. Golub, “Optimization of focusing of linearly polarized light,” Opt. Lett. 36, 352–354 (2011). [CrossRef]
  7. J. Artl and M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000). [CrossRef]
  8. D. P. Biss, K. S. Youngworth, and T. G. Brown, “Dark field imaging with cylindrical-vector beams,” Appl. Opt. 45, 470–479 (2006). [CrossRef]
  9. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef]
  10. S. Bara Viñas, Z. Jaroszewicz, A. Kołodziejczyk, and M. Sypek, “Zone plates with black focal spots,” Appl. Opt. 31, 192–198 (1992). [CrossRef]
  11. D. Gamic, X. Gan, and M. Gu, “Focusing of doughnut laser beams by a high numerical-aperture objective in a free space,” Opt. Express 11, 2747–2752 (2003). [CrossRef]
  12. R. Borghi, M. Santarsiero, and M. A. Alonso, “Highly focused spirally polarized beams,” J. Opt. Soc. Am. A 22, 1420–1431 (2005). [CrossRef]
  13. L. E. Helseth, “Smallest focal hole,” Opt. Commun. 257, 1–8 (2006). [CrossRef]
  14. N. Bokor and N. Davidson, “Generation of a hollow dark spherical spot by 4π focusing of a radially polarized Laguerre-Gaussian beam,” Opt. Lett. 31, 149–151 (2006). [CrossRef]
  15. Y. Iketaki, T. Watanabe, N. Bokor, and M. Fujii, “Investigation of the center intensity of first and second-order Laguerre-Gaussian beams with linear and circular polarization,” Opt. Lett. 32, 2357–2359 (2007). [CrossRef]
  16. Y. Kozawa and S. Sato, “Dark spot formation by vector beams,” Opt. Lett. 33, 2326–2329 (2008). [CrossRef]
  17. S. Sato and Y. Kozawa, “Hollow vortex beams,” J. Opt. Soc. Am. A 26, 142–146 (2009). [CrossRef]
  18. X. Hao, C. Kuang, T. Wang, and X. Liu, “Effects of polarization on the de-excitation dark focal spot in STED microscopy,” J. Opt. 12, 115707 (2010). [CrossRef]
  19. B. Tian and J. Pu, “Tight focusing of a double-ring-shaped, azimuthally polarized beam,” Opt. Lett. 36, 2014–2016 (2011). [CrossRef]
  20. N. Bokor, Y. Iketabi, T. Watanabe, K. Daigoku, N. Davidson, and M. Fujii, “On polarization effects in fluorescence depletion microscopy,” Opt. Commun. 272, 263–268 (2007). [CrossRef]
  21. G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426–427 (1952). [CrossRef]
  22. F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Letters 9, 1249–1254 (2009). [CrossRef]
  23. K. G. Makris and D. Psaltis, “Superoscillatory diffraction-free beams,” Opt. Lett. 36, 4335–4357 (2011). [CrossRef]
  24. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
  25. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004). [CrossRef]
  26. S. F. Pereira and A. S. van de Nes, “Superresolution by means of polarization, phase and amplitude pupil masks,” Opt. Commun. 234, 119–124 (2004). [CrossRef]
  27. R. P. Brent, “Algorithms for minimization without derivatives” (Prentice-Hall, 1973), pp. 195.
  28. T. R. M. Sales and G. M. Morris, “Fundamental limits of optical superresolution,” J. Opt. Soc. Am. A 14, 1637–1646 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited