OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Simulating photon-transport in uniform media using the radiative transport equation: a study using the Neumann-series approach

Abhinav K. Jha, Matthew A. Kupinski, Takahiro Masumura, Eric Clarkson, Alexey V. Maslov, and Harrison H. Barrett  »View Author Affiliations


JOSA A, Vol. 29, Issue 8, pp. 1741-1757 (2012)
http://dx.doi.org/10.1364/JOSAA.29.001741


View Full Text Article

Enhanced HTML    Acrobat PDF (842 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the implementation, validation, and performance of a Neumann-series approach for simulating light propagation at optical wavelengths in uniform media using the radiative transport equation (RTE). The RTE is solved for an anisotropic-scattering medium in a spherical harmonic basis for a diffuse-optical-imaging setup. The main objectives of this paper are threefold: to present the theory behind the Neumann-series form for the RTE, to design and develop the mathematical methods and the software to implement the Neumann series for a diffuse-optical-imaging setup, and, finally, to perform an exhaustive study of the accuracy, practical limitations, and computational efficiency of the Neumann-series method. Through our results, we demonstrate that the Neumann-series approach can be used to model light propagation in uniform media with small geometries at optical wavelengths.

© 2012 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(110.2990) Imaging systems : Image formation theory
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Imaging Systems

History
Original Manuscript: March 12, 2012
Manuscript Accepted: May 21, 2012
Published: August 1, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Abhinav K. Jha, Matthew A. Kupinski, Takahiro Masumura, Eric Clarkson, Alexey V. Maslov, and Harrison H. Barrett, "Simulating photon-transport in uniform media using the radiative transport equation: a study using the Neumann-series approach," J. Opt. Soc. Am. A 29, 1741-1757 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=josaa-29-8-1741


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005). [CrossRef]
  2. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001). [CrossRef]
  3. A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009). [CrossRef]
  4. A. A. Tanbakuchi, A. R. Rouse, and A. F. Gmitro, “Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media,” J. Biomed. Opt. 14, 044024 (2009). [CrossRef]
  5. J. Chen, V. Venugopal, and X. Ante’s, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express 2, 871–886 (2011). [CrossRef]
  6. M. Y. Kirillin, I. V. Meglinskii, and A. V. Priezzhev, “Effect of photons of different scattering orders on the formation of a signal in optical low-coherence tomography of highly scattering media,” Quantum Electron. 36, 247–252 (2006). [CrossRef]
  7. K. Takagi, H. Haneishi, N. Tsumura, and Y. Miyake, “Alternative oblique-incidence reflectometry for measuring tissue optical properties,” Opt. Rev. 7, 164–169 (2000). [CrossRef]
  8. H. H. Barrett and K. J. Myers, Foundations of Image Science, 1st ed. (Wiley, 2004).
  9. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef]
  10. H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003). [CrossRef]
  11. M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24, 895–902 (1997). [CrossRef]
  12. F. Gao, H. Niu, H. Zhao, and H. Zhang, “The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions,” Image Vis. Comput. 16, 703–712 (1998). [CrossRef]
  13. A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Probl. 22, 1509–1532 (2006). [CrossRef]
  14. S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007). [CrossRef]
  15. A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006). [CrossRef]
  16. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998). [CrossRef]
  17. E. D. Aydin, C. R. de Oliveira, and A. J. Goddard, “A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method,” Med. Phys. 29, 2013–2023 (2002). [CrossRef]
  18. E. D. Aydin, “Three-dimensional photon migration through voidlike regions and channels,” Appl. Opt. 46, 8272–8277 (2007). [CrossRef]
  19. A. H. Hielscher and R. E. Alcouffe, “Discrete-ordinate transport simulations of light propagation in highly forward scattering heterogenous media,” in Advances in Optical Imaging and Photon Migration, 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper ATuC2.
  20. M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54, 2493–2509 (2009). [CrossRef]
  21. M. L. Adams and E. W. Larsen, “Fast iterative methods for discrete ordinates particle transport calculations,” Prog. Nucl. Energy 40, 3–159 (2002). [CrossRef]
  22. J. K. Fletcher, “A solution of the neutron transport equation using spherical harmonics,” J. Phys. A: Math. Gen. 16, 2827–2835 (1983). [CrossRef]
  23. K. Kobayashi, H. Oigawa, and H. Yamagata, “The spherical harmonics method for the multigroup transport equation in x-y geometry,” Ann. Nucl. Energy 13, 663–678 (1986). [CrossRef]
  24. L. D. Montejo, A. D. Klose, and A. H. Hielscher, “Implementation of the equation of radiative transfer on block-structured grids for modeling light propagation in tissue,” Biomed. Opt. Express 1, 861–878 (2010). [CrossRef]
  25. K. Ren, G. S. Abdoulaev, G. Bal, and A. H. Hielscher, “Algorithm for solving the equation of radiative transfer in the frequency domain,” Opt. Lett. 29, 578–580 (2004). [CrossRef]
  26. S. Wright, M. Schweiger, and S. Arridge, “Reconstruction in optical tomography using the PN approximations,” Meas. Sci. Technol. 18, 79–86 (2007). [CrossRef]
  27. E. Aydin, C. de Oliveira, and A. Goddard, “A finite element-spherical harmonics radiation transport model for photon migration in turbid media,” J. Quant. Spectrosc. Radiat. Transfer 84, 247–260 (2004). [CrossRef]
  28. R. Wells, A. Celler, and R. Harrop, “Analytical calculation of photon distributions in SPECT projections,” IEEE Trans. Nucl. Sci. 45, 3202–3214 (1998). [CrossRef]
  29. B. F. Hutton, I. Buvat, and F. J. Beekman, “Review and current status of SPECT scatter correction,” Phys. Med. Biol. 56, R85–R112 (2011). [CrossRef]
  30. M. A. King, S. J. Glick, P. H. Pretorius, R. G. Wells, H. C. Gifford, and M. V. Narayanan, Emission Tomography: The Fundamentals of PET and SPECT (Academic, 2004).
  31. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  32. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990). [CrossRef]
  33. P. Gonzalez-Rodriguez and A. D. Kim, “Comparison of light scattering models for diffuse optical tomography,” Opt. Express 17, 8756–8774 (2009). [CrossRef]
  34. H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093(2009). [CrossRef]
  35. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–146 (2003). [CrossRef]
  36. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
  37. T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” Neuroimage 31, 1426–1433 (2006). [CrossRef]
  38. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. USA 104, 12169–12174 (2007). [CrossRef]
  39. A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004). [CrossRef]
  40. A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16, 79–88 (2005). [CrossRef]
  41. B. Gallas and H. H. Barrett, “Modeling all orders of scatter in nuclear medicine,” in IEEE Nuclear Science Symposium, Vol. 3 (IEEE, 1998), pp. 1964–1968.
  42. H. H. Barrett, B. Gallas, E. Clarkson, and A. Clough, Computational Radiology and Imaging: Therapy and Diagnostics (Springer, 1999), pp. 71–100.
  43. M. Kim, G. Skofronick-Jackson, and J. Weinman, “Intercomparison of millimeter-wave radiative transfer models,” IEEE Trans. Geosci. Remote Sens. 42, 1882–1890 (2004). [CrossRef]
  44. T. Deutschmann, S. Beirle, U. Frie, M. Grzegorski, C. Kern, L. Kritten, U. Platt, C. Prados-Roman, J. Pukite, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: Introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011). [CrossRef]
  45. Z. Wang, M. Yang, and G. Qin, “Neumann series solution to a neutron transport equation of slab geometry,” J. Syst. Sci. Complexity 6, 13–17 (1993).
  46. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  47. E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics (Chelsea, 1955).
  48. G. Arfken and H. Weber, Mathematical Methods for Physicists, Vol. 3 (Academic, 2005).
  49. L. Wang, S. L. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef]
  50. J. C. Chai, H. S. Lee, and S. V. Patankar, “Finite volume method for radiation heat transfer,” J. Thermophys. Heat Transf. 8, 419–425 (1994).
  51. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef]
  52. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Hybrid radiative-transfer-diffusion model for optical tomography,” Appl. Opt. 44, 876–886 (2005). [CrossRef]
  53. T. Spott and L. O. Svaasand, “Collimated light sources in the diffusion approximation,” Appl. Opt. 39, 6453–6465 (2000). [CrossRef]
  54. A. K. Jha, M. A. Kupinski, H. H. Barrett, E. Clarkson, and J. H. Hartman, “A three-dimensional Neumann-series approach to model light transport in non-uniform media,” J. Opt. Soc. Am. A (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited