OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Three-dimensional Neumann-series approach to model light transport in nonuniform media

Abhinav K. Jha, Matthew A. Kupinski, Harrison H. Barrett, Eric Clarkson, and John H. Hartman  »View Author Affiliations

JOSA A, Vol. 29, Issue 9, pp. 1885-1899 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (716 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the implementation, validation, and performance of a three-dimensional (3D) Neumann-series approach to model photon propagation in nonuniform media using the radiative transport equation (RTE). The RTE is implemented for nonuniform scattering media in a spherical harmonic basis for a diffuse-optical-imaging setup. The method is parallelizable and implemented on a computing system consisting of NVIDIA Tesla C2050 graphics processing units (GPUs). The GPU implementation provides a speedup of up to two orders of magnitude over non-GPU implementation, which leads to good computational efficiency for the Neumann-series method. The results using the method are compared with the results obtained using the Monte Carlo simulations for various small-geometry phantoms, and good agreement is observed. We observe that the Neumann-series approach gives accurate results in many cases where the diffusion approximation is not accurate.

© 2012 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(110.2990) Imaging systems : Image formation theory
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Imaging Systems

Original Manuscript: March 29, 2012
Revised Manuscript: June 29, 2012
Manuscript Accepted: July 2, 2012
Published: August 17, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Abhinav K. Jha, Matthew A. Kupinski, Harrison H. Barrett, Eric Clarkson, and John H. Hartman, "Three-dimensional Neumann-series approach to model light transport in nonuniform media," J. Opt. Soc. Am. A 29, 1885-1899 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43(2005). [CrossRef]
  2. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001). [CrossRef]
  3. A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009). [CrossRef]
  4. H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009). [CrossRef]
  5. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–146 (2003). [CrossRef]
  6. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).
  7. T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” NeuroImage 31, 1426–1433 (2006). [CrossRef]
  8. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. USA 104, 12169–12174 (2007). [CrossRef]
  9. A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004). [CrossRef]
  10. A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16, 79–88 (2005). [CrossRef]
  11. T. Tarvainen, M. Vauhkonen, v. Kolehmainen, J. P. Kaipio, and S. R. Arridge, “Utilizing the radiative transfer equation in optical tomography,” Piers Online 4, 655–661 (2008).
  12. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995). [CrossRef]
  13. A. P. Schweiger, M. Gibson, and S. R. Arridge, “Computational aspects of diffuse optical tomography,” IEEE Comput. Sci. Eng., 5, 33–41 (2003).
  14. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993). [CrossRef]
  15. H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003). [CrossRef]
  16. M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24, 895–902 (1997). [CrossRef]
  17. F. Gao, H. Niu, H. Zhao, and H. Zhang, “The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions,” Image Vis. Comput. 16, 703–712 (1998).
  18. A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Probl. 22, 1509–1532 (2006). [CrossRef]
  19. S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007). [CrossRef]
  20. A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006). [CrossRef]
  21. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998). [CrossRef]
  22. E. D. Aydin, C. R. de Oliveira, and A. J. Goddard, “A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method,” Med. Phys. 29, 2013–2023 (2002). [CrossRef]
  23. E. D. Aydin, “Three-dimensional photon migration through voidlike regions and channels,” Appl. Opt. 46, 8272–8277 (2007). [CrossRef]
  24. A. H. Hielscher and R. E. Alcouffe, “Discrete-ordinate transport simulations of light propagation in highly forward scattering heterogenous media,” in Advances in Optical Imaging and Photon Migration (Optical Society of America, 1998), paper ATuC2.
  25. M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54, 2493–2509 (2009). [CrossRef]
  26. M. L. Adams and E. W. Larsen, “Fast iterative methods for discrete ordinates particle transport calculations,” Prog. Nucl. Energy 40, 3–159 (2002). [CrossRef]
  27. J. K. Fletcher, “A solution of the neutron transport equation using spherical harmonics,” J. Phys. A: Math. Gen. 16, 2827–2835 (1983). [CrossRef]
  28. K. Kobayashi, H. Oigawa, and H. Yamagata, “The spherical harmonics method for the multigroup transport equation in x-y geometry,” Ann. Nucl. Energy 13, 663–678 (1986). [CrossRef]
  29. L. D. Montejo, A. D. Klose, and A. H. Hielscher, “Implementation of the equation of radiative transfer on block-structured grids for modeling light propagation in tissue,” Biomed. Opt. Express 1, 861–878 (2010). [CrossRef]
  30. K. Ren, G. S. Abdoulaev, G. Bal, and A. H. Hielscher, “Algorithm for solving the equation of radiative transfer in the frequency domain,” Opt. Lett. 29, 578–580 (2004). [CrossRef]
  31. S. Wright, M. Schweiger, and S. Arridge, “Reconstruction in optical tomography using the PN approximations,” Meas. Sci. Technol. 18, 79–86 (2007). [CrossRef]
  32. E. Aydin, C. de Oliveira, and A. Goddard, “A finite element-spherical harmonics radiation transport model for photon migration in turbid media,” J. Quant. Spectrosc. Radiat. Transfer 84, 247–260 (2004). [CrossRef]
  33. R. Wells, A. Celler, and R. Harrop, “Analytical calculation of photon distributions in spect projections,” IEEE Trans. Nucl. Sci. 45, 3202–3214 (1998). [CrossRef]
  34. B. F. Hutton, I. Buvat, and F. J. Beekman, “Review and current status of SPECT scatter correction,” Phys. Med. Biol. 56, R85–R112 (2011). [CrossRef]
  35. M. A. King, S. J. Glick, P. H. Pretorius, R. G. Wells, H. C. Gifford, and M. V. Narayanan, Emission Tomography: The Fundamentals of PET and SPECT (Academic, 2004).
  36. W.-f. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  37. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990). [CrossRef]
  38. P. Gonzalez-Rodriguez and A. D. Kim, “Comparison of light scattering models for diffuse optical tomography,” Opt. Express 17, 8756–8774 (2009). [CrossRef]
  39. B. Gallas and H. H. Barrett, “Modeling all orders of scatter in nuclear medicine,” in Proceedings of IEEE Nuclear Science Symposium (IEEE, 1998), pp. 1964–1968.
  40. H. H. Barrett, B. Gallas, E. Clarkson, and A. Clough, Computational Radiology and Imaging: Therapy and Diagnostics (Springer, 1999).
  41. Z. Wang, M. Yang, and G. Qin, “Neumann series solution to a neutron transport equation of slab geometry,” J. Syst. Sci. Complex. 6, 13–17 (1993).
  42. M. Kim, G. Skofronick-Jackson, and J. Weinman, “Intercomparison of millimeter-wave radiative transfer models,” IEEE Trans. Geosci. Remote Sens. 42, 1882–1890 (2004). [CrossRef]
  43. T. Deutschmann, S. Beirle, U. F. M. Grzegorski, C. Kern, L. Kritten, U. Platt, Cristina Prados-Román, Puķīte Jānis, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011). [CrossRef]
  44. A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. A. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transfer equation: A study using the Neumann-series approach,” J. Opt. Soc. Am. A 29, 1741–1757 (2012).
  45. A. K. Jha, M. A. Kupinski, D. Kang, and E. Clarkson, “Solutions to the radiative transport equation for non-uniform media,” in Biomedical Optics (Optical Society of America, 2010), p. BSuD55.
  46. H. H. Barrett and K. J. Myers, Foundations of Image Science, 1st ed. (Wiley, 2004).
  47. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  48. F. Jacobs, E. Sundermann, B. D. Sutter, M. Christiaens, and I. Lemahieu, “A fast algorithm to calculate the exact radiological path through a pixel or voxel space,” J. Comput. Inf. Technol. 6, 89–94 (1998).
  49. R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252–255 (1985). [CrossRef]
  50. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008). [CrossRef]
  51. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009). [CrossRef]
  52. B. Huang, J. Mielikainen, H. Oh, and H.-L. A. Huang, “Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI),” J. Comput. Phys. 230, 2207–2221 (2011). [CrossRef]
  53. C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230, 6010–6022 (2011). [CrossRef]
  54. L. Szirmay-Kalos, G. Liktor, T. Umenhoffer, B. Toth, S. Kumar, and G. Lupton, “Parallel iteration to the radiative transport in inhomogeneous media with bootstrapping,” IEEE Trans. Vis. Comput. Graphics 17, 146–158 (2010).
  55. “TESLA C2050/C2070 GPU Computing Processor: NVIDIA Tesla Datasheet” (2010).
  56. “The Linux programmers manual” (2008).
  57. J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with CUDA,” ACM Queue 6, 40–53(2008).
  58. J. W. Moore, “Adaptive X-ray computed tomography,” Ph.D. thesis (College of Optical Sciences, University of Arizona, 2011).
  59. “NVIDIA CUDA C programming guide” (2012), Version 4.2.
  60. “CUDA C best practices guide” (2012), Version 4.1.
  61. “Tuning CUDA Applications for Fermi” (2010), Version 1.3.
  62. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002).
  63. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Hybrid radiative-transfer-diffusion model for optical tomography,” Appl. Opt. 44, 876–886 (2005). [CrossRef]
  64. T. Spott and L. O. Svaasand, “Collimated light sources in the diffusion approximation,” Appl. Opt. 39, 6453–6465 (2000). [CrossRef]
  65. Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media:the ballistic to diffusive transition,” Phys. Rev. E 60, 4843–4850 (1999). [CrossRef]
  66. A. Garofalakis, G. Zacharakis, G. Filippidis, E. Sanidas, D. D. Tsiftsis, V. Ntziachristos, T. G. Papazoglou, and J. Ripoll, “Characterization of the reduced scattering coefficient for optically thin samples: theory and experiments,” J. Opt. A 6, 725–735 (2004). [CrossRef]
  67. S. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. Nayar, and H. Jensen, “Acquiring scattering properties of participating media by dilution,” ACM Trans. Graph. 25, 1003–1012 (2006). [CrossRef]
  68. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37, 7401–7409 (1998). [CrossRef]
  69. A. A. Tanbakuchi, A. R. Rouse, and A. F. Gmitro, “Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media,” J. Biomed. Opt. 14, 044024 (2009). [CrossRef]
  70. J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning GEMMs for Fermi,” in “SC11 (2011).
  71. K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Commun. ACM 52, 56–67 (2009). [CrossRef]
  72. D. S. Mishra BP, “Parallel computing environments: a review,” IETE Technical Review 28, 240–247 (2011).
  73. Y. Mukaigawa, Y. Yagi, and R. Raskar, “Analysis of light transport in scattering media,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 153–160.
  74. S. Nayar, G. Krishnan, M. Grossberg, and R. Raskar, “Fast separation of direct and global components of a scene using high frequency illumination,” ACM Trans. Graph. 25, 935–944 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited